
 

Letter to Verulam – Effective Width of Slabs 

Original Letter 

Ramsay Maunder Associates, 

Institution of Structural Engineers, 

International HQ, 

11 Upper Belgrave Street, 

London SW1X 8BH. 

9
th

 November 2010 

Dear Editor of Verulam, 

 

We would like to add to the discussion initiated by John Botterill (Verulam, 5
th

 May 2010)  on the 

width of slab to be considered to carry a concentrated load (“shear loads on slabs”), and the replies 

by Bill Wadsworth and Charles Goodchild (Verulam, 19
th

 October 2010). The question of effective 

width raises interesting questions relating to the use of EC2, the use of elastic and limit analyses, 

and ductility. 

 

EC2 is written as a general rather than a prescriptive code of practice, thus relying on the engineer 

to carry out appropriate structural analyses, or refer to standard solutions if they exist, rather than 

provide guidance rules for the concentrated load problem. 

 

Referring to the elastic analysis of the problem as defined by Bill Wadsworth, it would seem to us 

that finite element models can be used to provide reliably accurate distributions of moment and 

shear throughout the slab. We considered the case of a central concentrated load, and found that the 

distributions converged to values a little different from Bill’s finite difference method based on a 

horizontal grid spacing of 0.75m parallel to the supports – Figures 1 and 2. We have confidence in 

our results since we have good agreement between both conforming and equilibrating finite element 

models (referred to as EFE in figures 1 and 2). We have assumed the load to be uniformly 

distributed over a square area of side length 0.2m which is also taken as the thickness of the slab. So 

the main difference in the moments occurs under the load, which might be expected, but a bigger 

difference occurs for the shear force at the centre of a support, and the finite element models 

recognise the concentrated downward reactions located at the ends of the supports. 

Finite Element Specialists and Engineering Consultants 

 



 

Figure 1: Bending Moments at Midspan  Figure 2: Reactions 

 

So what moments and forces should be used in design, particularly if we want to justify designing 

for smaller moments in the neighbourhood of the load? EC2 allows us to exploit plastic methods 

and use limit analyses, although it doesn’t appear to be prescriptive as regards ductility in this 

situation! We have carried out limit analyses based on the yield line method for upper bounds, and a 

method for lower bounds based on equilibrium finite element models (EFE), for various 

arrangements of orthotropic reinforcement (assuming equal top and bottom reinforcement for 

simplicity). Results from the yield line method indicate that a single circular fan mechanism is not 

the most critical mechanism, but rather some variation on the mechanism in Figure 3. The 

interesting feature of the lower bound results plotted in Figure 4 is that the region of slab that is 

fully utilised by yielding tends to form a well defined band for highly orthotropic reinforcement, 

and the width of this band agrees well with the dimensions of the corresponding yield line pattern. 

This gives us confidence in the limit solutions which agree as regards the limit load to within 10%. 

The results in figure 1 for bending moments across the 12m width of slab in Bill’s example indicate 

the extent of moment redistribution from the elastic state. 

 

So from the design point of view the limit analyses provide a rational way to redistribute moments 

throughout the slab, and this leads to much lower moments in the neighbourhood of the load. Can 

we safely base ULS design on these moments? This raises the question of ductility, as would a 

design based on a simple fan mechanism if this was appropriate, since with equal top and bottom 

reinforcement in the isotropic case this mechanism would imply the need for moment capacities of 
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only some 8kNm/m (P/4π), instead of some 40kNm/m from the elastic analyses!! It would appear 

from Section 5.6 Plastic analysis in EC2 that rotation capacity needs to be checked, but do the same 

rules apply for slabs as in the current problem as for continuous beams?  If so, how then is the value 

of a moment to be defined when we recognise that moment becomes a tensor quantity rather than a 

scalar? 

 

 

Figure 3: Yield-Line Pattern 

 

 

Figure 4: Contours of Utilisation from EFE 

 

Further details of the equilibrium finite element models (EFE) used in this study and more 

comprehensive results may be seen at www.ramsay-maunder.co.uk. 

 

Yours sincerely, 

 

Edward Maunder FIStructE & Angus Ramsay MIMechE.  



Note on Support Conditions 
In our response to the Letter to Verulam on the Effective Width of Slabs, we presented (shear) 

reactions (figure 2 in our letter) with the units kN.  These should have been reported as distributions 

with the units of kN/m.   

 

Our analysis considered the simple support conditions as being ‘hard’ with boundary twist 

restrained and non-zero torsional moment reactions.  Correspondence with Bill Wadsworth revealed 

that in his analysis he had assumed ‘soft’ simple supports with free boundary twist and and zero 

torsional moment reactions.  The different support conditions (hard versus soft) lead to different 

shear reactions and this explains the difference in our results and those of Bill Wadsworth.  The 

following figure illustrates this difference using our EFE software – we have used cubic moment 

fields for the elastic analysis with SS representing soft-simple and HS representing hard simple 

support conditions. 

 

Figure 1: Reaction distributions for Verulam Problem with Hard & Soft Simple Supports 
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Supplement to Letter 

Background 

RMA has developed equilibrium finite element software (EFE) for the elastic and plastic design and 

assessment of, amongst others, reinforced concrete slabs and bridge decks.  The ongoing Verulam 

discussion on Effective Width of Slabs was of interest to us since, with the safe plastic analysis 

techniques available within EFE, the calculation of effective widths, albeit currently assuming 

adequate ductility, is simply conducted.  We submitted a letter to The Structural Engineer 

summarising the results obtained from EFE on a particular slab configuration discussed in the letter.  

Here we present supplementary results which, for reasons of space, did not go into the letter.   

Elastic Solution 

The slab configuration considered in Verulam is a 12m by 6m one-way (short dimension) spanning 

simply supported slab with central point load.  A 6m by 3m symmetric quadrant of the slab was 

modelled as shown in figure 1.  

 

 

 

Figure 1: Geometry, material, boundary conditions and loading 

 

The elastic properties and thickness are given in the figure together with the boundary conditions 

(symmetry on two edges and simple support on one edge) and the loading (25kN on one quadrant 



distributed evenly over a 0.1m by 0.1m region at the centre of the plate).  The simple support 

condition that we model is ‘hard’, in the context of Reissner-Mindlin plate theory, i.e. torsional 

moments form part of the reactions. 

 

A mesh refinement study using the two meshes shown in figure 2(a) and (b) was conducted with 

moment fields varying from quadratic to quartic (degree 2 to 4).   

 

     

(a) 112 triangles (EFE)      (b) 1800 squares (EFE, OASYS) (c) 347 triangles (ABAQUS) 

Figure 2: Finite element meshes  

 

Three quantities of interest were monitored for convergence these being the transverse displacement 

at point A, the moment Myy at point A and the shear Qy at point B.  The results are shown in table 

1 which also includes FE results from ABAQUS and OASYS (both programs use conventional 

conforming elements), Bill Wadsworth’s finite different results (BW) and Robert Hairsine’s grillage 

results (RH).  Note that RH’s results have been inferred from his letter (Verulam, 16
th

 November 

2010) where he states that his results were within 10% and 5% of BW’s results respectively for 

moments and shears – we have assumed that the results take him nearer to the correct value.   

 

The mesh refinement study indicates that the results obtained for the 112 mesh with quartic moment 

fields have converged as they are identical to the much more refined 1800 element mesh.  The 

conventional conforming finite element models agree well with EFE when quadratic displacement 

fields are used – the results for the linear displacement elements are, as expected, less accurate.   

 

It is interesting to note how different the finite difference and grillage results are from the true 

values – 20% underestimate for moment and 42% overestimate for shear.  It is interesting also to 

see how good the results from EFE are for the coarse model.   

 

 

 

 

 



 

 

(a) Translation Uz 

 

(b) Moment Mxx 

 

(c) Rotation Rx 

 

(d) Moment Myy 

 

(e) Rotation Ry 

 

(f) Moment Mxy (Torsional) 

 

(g) Shear Qx 

 

(h) Shear Qy 

Figure 3: Contour plots of the displacements, Cartesian moments and shears 
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        Table 1: Convergence of quantities of interest with mesh refinement 

 

 

Contour plots of the displacements, Cartesian moments and shears are shown in figure 3.  In the 

moment plots, hogging moments are positive and are plotted above the plane of the elements, 

sagging moments are negative and are plotted below.  Note that these are unprocessed results, i.e. 

they are plots of the moments and shears from the finite element model.  Unlike conforming finite 

elements these quantities are in equilibrium with the applied load and conform with the static 

boundary conditions – for example Mxx and Myy should be zero on the simply supported and free 

edges and Mxy should be zero on all except the simply supported edge where torsional moments 

were restrained (hard simple support).   

 

One of the virtues of EFE is that, with equilibrium being satisfied a-priori, high quality results of 

practical engineering significance are immediately available.  Figure 4 shows some of these results 

including trajectories, which aid understanding of the way in which the load is transmitted through a 

structure, and boundary distributions which illustrate how the load is transferred into adjacent 

structures.   

 

 

 

 

 

 

 



 

 

 

 

 

 

(a) Resultant shear trajectories 

 

(d) Cartesian moments on model boundary 

 

 

(b) Maximum principal moment trajectories 

 

(e) Cartesian shears on model boundary 

 

(c) Minimum principal moment trajectories 

 

 

Figure 4: Plots of shear and moment trajectories and boundary distributions of moments and shear 
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Plastic Solution 

In addition to elastic analyses, EFE performs plastic ULS analysis of, amongst others, reinforced 

concrete plates.  The moment fields used are in equilibrium with the applied load and the Nielsen 

bi-conic yield criterion (or alternatively the Wood-Armer yield criterion) limits the values of the 

moments.  The scheme is a rigorous lower-bound approach providing guaranteed safe, conservative, 

estimates of the flexural collapse load (when shear is not critical) irrespective of mesh refinement.   

The moment fields are constructed for the plastic solution based on Kirchhoff type elements which 

enforce continuity of bending moments and equivalent Kirchhoff shear forces.   

The software also includes a conventional yield-line solver for obtaining traditional upper-bound 

solutions for comparison purposes.  We have conducted yield line analyses for cases with yield 

moments of 100kNm/m for both hogging and sagging in the span direction, and with transverse 

yield moments at 100% (isotropic), 50%, 10% and 5% of this value.  For the isotropic case, upper 

and lower bound solutions agree at a load factor (λ) of 8.14, and as the transverse yield moment is 

reduced so is the load carrying capacity.  Figure 5 shows contours of utilisation for the four 

transverse yield moments considered. 

 

(a) 100% (λ = 8.14) 

 

(b) 50% 

 

(c) 10% (λ = 3.37) 

 

(d) 5% 

 

Figure 5:  Utilitisation for various percentages of transverse yield moment (EFE) 
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Figure 6 shows the yield line collapse mechanism with a single geometric variable X.  In this figure 

the blue line represents a sagging yield line and the dashed red line a hogging yield line.  This 

mechanism is a simplified first approximation of the true collapse mechanism which in practice will 

probably be more complicated.  The load factor from the refined EFE model is probably within a 

few percent of the true value and the inset to figure 6 shows how both upper and lower bound load 

factors vary with the geometric variable X for the eight element mesh.  It is seen that whereas the 

yield line solution is extremely sensitive to the value of X, the lower bound solution from EFE 

remains sensibly invariant despite an extremely coarse mesh.   

 

Figure 6: Geometric Optimisation for Yield Line (10% transverse yield moment) 

 

Boundary distributions of moment are shown in figure 7 for the case of 10% transverse yield 

moment.  It should be noted that in this figure the torsional moment Mxy is not exactly zero along 

the lines of symmetry, particularly in the neighbourhood of the load, this being a consequence of the 

use of Kirchhoff type elements.      

 

Figure 7: Boundary distributions for EFE (10% transverse yield moment) 

 

In figure 8 the boundary distributions of bending moments along the centre line of the slab for the 

various analyses conducted are shown.   
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Figure 8: Distributions of Mxx and Myy along centre line (Elastic and Plastic) 

Closure 

We have tried to show in the original letter and now in this supplement that the application of 

equilibrium finite element methods (elastic and/or plastic), provide rational and safe answers to 

many of the questions faced by practicing structural engineers. 

It is clear from this exercise that there are considerable differences between finite element results, 

which we believe to be close to theoretical elastic solution, and methods based on finite differences 

or grillage models.  Finite element software is widely available and should now be an everyday tool 

for the practicing structural engineer.   

Finite element techniques can be extended to plastic methods which, when based on equilibrium, 

seek lower-bound solutions.  This enables the engineer to explore the potential benefits of moment 

redistribution.  Such methods provide a rational and safe approach to answering questions such as 

that posed in the original Verulam letter regarding the effective width of slabs. 

-45000

-40000

-35000

-30000

-25000

-20000

-15000

-10000

-5000

0

5000

10000

0 1 2 3 4 5 6

M
o

m
e

n
t 

(N
m

/
m

)

Distance alone Centre Line (m)

Myy - Elastic

Myy - Limit (5%)

Myy - Limit (10%)

Myy - Limit (50%)

Myy - Limit (100%)

Mxx - Elastic

Mxx - Limit (5%)

Mxx - Limit (10%)

Mxx - Limit (50%)

Mxx - Limit (100%)

Myy - Verulam

Mxx Limit 50% 

Mxx Limit 10% 


