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8. Torsion

Consider a W member, of arbitrary but W
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cross-section, loaded by torsion about its axis.

(We will not discuss here where that axis is — that will be
covered in 3D4 where it will be shown that the location is
important and specific.)

If the torque 1s constant, eU'e'y cross-section must be

subjected to the same torque.

All the stresses must be carried across each cross-section.
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Consider a small element in that cross-section.
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Equilibrium in the z-direction gives

22 + 9027( . 90"2 ~ 0
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Displacements

If the section rotates by an angle &without W

which is valid for thick sections, but not always for bhan ones,

]

then the displacements in the x-y plane are easy to find.
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But the section will also wﬂ(‘b by an (as yet) unknown
amount. Different parts of the cross-section will displace

axially by different amounts.

Note that this breaks the assumption about “plane sections
remaining plane”, which is valid for bending but not for torsion.

The warping displacement w will be assumed to be proportional

to the ke ’/ %"‘\?’wof the angle of twist:-
| £~ atpaly fomdin
brobirg  w=0f(x) [t yok Homoun)
If the bar is subject to um.gm torsion, f(x,y) will be

the same for all cross-sections.
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Note that this is a very strong assumption. There are very
important problems for which it is not true, and methods to deal
with the exceptions will be covered in 3D4.

Strains

With these displacements and using the strain-displacement
relations from section 3.
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Stresses

O-xx = O-yy = O-ZZ = O-Xy e O

(so no normal stresses between fibres and no axial stresses)
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Equilibrium equation becomes:-

aO-xz_l_ao-yzzo
ox oy
2 2

e Of 3 _,

Boundary Conditions

Shear stress must be parallel to the edge
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Consider shear stresses on small element

ox ds \ Oy ds

Can be turned into a boundary condition based on a%n

normal to the surface but complicated.
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Prandtl Stress Function

Prandtl (1903) suggested the use of a stress function § which
has the properties that:-

¥ oy Ox
o, el -G&' @+x
ox oy
which means that the differential equation becomes
2 2 )
ox* oy’

and the boundary condition simplifies to

d /4 _ 0
ds
i.e. yis constant around the boundary. Normal to arbitrarily

take =0 around an external boundary.

This equation is much easier to solve using finite difference or
finite element programs.
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Precast concrete beam — contours of

Notice concentration of contours near re-entrant corner.

What does this mean? From definition of i

_oy
oy

O

XZ

Magnitude of shear stress is proportional to slope of § function.

So shear stresses are W at edge near re-entrant

corners and lo-wnvt at external corners and at the points
furthest from an edge.

Direction of shear stress is parallel to contours.

No stress passes across contour lines. Could consider section
as a set of nested tubes whose thickness varies.
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Torque

What is the torque on the section?

Dothe pMnesdo produce a pure W ?

A Zy
Y T__f”"
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Consider 0:;2 stresses in vertical strip between points J and K

K
M ox
*—SA —
T
Shear force in x-direction is
f;f
X = ﬂ@_‘” dxdy = f[ Ia_W dy}jx
0y oy
= [(wx —w, Jx

But \V‘ 0 on boundary

So, )(’—D which means shear force from this strip in x-

direction is zero, so shear force from all strips must be zero.

w W = 0‘0"” ‘3C7--CIB



A7
So what is the torque about the origin? 5

1= i1y sty = Ly s

—I/L—Wdy x = [ydAd

Similarly for T,

So the total torque on the section is simply twice the volume
under the surface defined by

r= 2 (4A

Torsional stiffness
Torque T=GJO =2[ydA
_ 2[pdd
G&

J is known as 5" . VM torsion constant and is M
_
the Polar 2" Moment of Area.

Normal procedure — set G & =1; set up and solve Poisson
equation to get volume under surface (to get stiffness) and find
the steepest slope to get maximum shear stress.
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Membrane analogy
(also called soap film analogy)

Useful for visualizing shape of function

Imagine a rubber sheet, stretched across a planar wire frame, in
such a way that it has a uniform outward stress S at the edges

<

Now imagine that it is loaded by a uniform lateral pressure q
—

What shape does the sheet take up? Assume small deflections
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Consider a small element in x-direction only
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ke o = Clg iy ol s
LA oy

2 2
aa g il gyg = _% with 9= O on boundary
X

So the deflection of the rubber sheet (g) takes the same form as
the Prandtl stress function i

or

(Real) 2GH = % (Membrane analogy)
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Easy to show then that shear stress at external corners is W

and at internal corners must be m.&a»-il

z
5

I

_\-‘!""l.—"uﬂ;’\bv:hﬂ"\v\

;

Clao = O
Be very careful of this effect — W( M analyses

will not pick this up, or will give answers that depend on the size

of the elements used.

Result is a function of the analysis method used and is not an

accurate representation of what happens.

3C7--CIB



2 |

Rounded corners

& |
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If corner is rounded the stress goes up but not as much

O 75(max) — 0'21(1*'%(1)
ter Tmriide } Gurrdisr o cumalyes )
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In parallel-sided elements, variation in ¥ becomes one-

dimensional and varies parabolically across the section

Very useful when analyzing sections made up from flat plates
M‘J CNVOY
EaV.AJI cadon

T <
w s
é’
é—.—.
o{ Coris
Variations concentrated in local areas at Jl.lI’lCthl’lS which can
have major effect if section is thicker at that position.

Example of St Venant’s principle.
dhak of Ak ooz
/Jubws M@ i M
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Sections with holes

= constant on each boundary but will M* be the same

on inside and outside.

2% 1) DY

A

Canéhow that 7' =2 _U;V dxdy where mtegral is taken over
whole area, including the hole. 9"’”’ )

Membrane analogy. Imagine hole as a rigid plate that must
remain parallel to the rigid plate around the outside. Assume
that the tube is thin.

—~| t

77 7 77 7?27 2 2 o f rr

Consider area within centahne of the tube (4,))
ve
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Erprty
For ¢ small APB is a F'ﬂ'b"‘b‘

so slope at P = Mﬂ '/ A'B
Normal reaction/unit length of centre line 4/ M"Wb"-""‘

Ssiné’zStané’:Sé since @ prevy’
So equilibrium of membrane gives

because S and k are constants ( R“j / M!‘?‘J

2fypdA 4S8 |gdA
G& q

Remembering 2G @' = %, then J =

Volume under membrane J gdA =kA,

Leads to J= which is the formula in the data book
st for  Larrsisnal
4 ’/ Q ﬂ;w.
Note that this result has been achieved without consideration of

displacements, so system is statically determinate. This is
because there is only one rotation to be considered.

3C7--CJB



(25
Multi-cell tubes

These systems are now statically indeterminate. We must
ensure that the rotation we impose on each cell is the same.

Apply membrane analogy as before. In each hole the
displacement of the rigid plate is given by g = ki (and the

outside can be considered a special case where g = ko =0.

OvJnul
9=K:. ?=k0=0

J;K,
{

T vorw

So in each piece of wall the normal reaction, per unit length, in

the membrane is given by bk o l

where i and j are the areas on each side of the wall and ¢ is the
wall thickness (which can vary).

Equilibrium of each plate gives

q4; =S<,f(k‘+kj)df
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Rate of twist (which must be the same for all tubes)

G L c_[(k"_kf)dz
28 24,0

where integration is taken round wall of tube i .

If N cells, there are N equations like this which allow the values
of k; to be found.
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