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Modelling Beam Members with Finite Elements 

 

Commercial finite element systems generally offer a range of beam finite elements for the engineer to model his/her beam 

type structure.  Different finite element formulations are often provided to cope with the standard Euler-Bernoulli beam, 

which does not include the influence of shear deformation, and with Mindlin and/or Hybrid formulations, which do 

account for shear deformation as in Timoshenko’s theory.  The Mindlin type element, which uses the same shape functions 

to approximate all displacements (translations and rotations) is often offered as a variable degree element, e.g., two-

noded linear shape functions or three-noded quadratic shape functions, providing the engineer with the opportunity to 

adopt a p-type mesh refinement strategy in addition to the usual h-type approach.  The Mindlin element with both linear 

and quadratic shape functions was used to model the problem shown in figure 1(a) where the beam is fixed at both ends 

with a concentrated load at the centre of the span.  A two-element mesh was used with a node at the centre of the beam 

where the load is applied.  The finite element reactions agree for both degrees of shape function (p=1 and p=2), and with 

the verification documentation supplied by the software vendor.       

 

  

Figure 1:  Beam problems and finite element reactions  

 

On the basis of the quality of the results for the problem of figure 1(a) achieved with a minimal two-element mesh, the 

engineer might be led into thinking that the same quality would be achieved if the concentrated load were moved to three 

quarter’s span as shown in figure 1(b).  The finite element reactions certainly satisfy vertical and rotational equilibrium in 

the global sense.  However, since moment equilibrium involves an unknown statically indeterminate constant moment one 

cannot be sure that the moment reactions are the correct values.  Evidence that they might be incorrect is provided by the 

so-called element table results provided by the software used to produce these results, which shows moments at the 

supports that have been extrapolated from the integration points.   

 

The Challenge 

The reader is asked to investigate the two beam problems presented in figure 1 using the various beam elements offered in their finite 

element system (including and excluding shear deformation) with the aim of providing accurate results for the moment reactions, the 

maximum displacement and the maximum bending moment.  Evidence of solution verification should be provided in terms of the 

convergence of the quantities of interest with mesh refinement and a prediction of the minimum number of elements required to obtain a 

accuracy of 1% in all quantities should be provided. 

 

Raison d’être for the Challenge 

In structural engineering the beam is a very widely used structural member.  Whilst simple beam 

members may be analysed by hand using strength of material solutions, they usually form part of a 

larger structure and the way in which the loads flow around the structure, as shear forces and 

bending moments, will depend on the relative stiffness of adjacent members and such complicated 

statically indeterminate structures are not tractable by hand methods.  In such cases the finite 

element (FE) method is often adopted.   
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Often, when faced with a commercial FE system, the engineer will find that is contains a veritable 

plethora of beam elements each purporting to be suitable for different type of beam.  Different 

beams will typically be based on different beam theories and different FE formulations of the 

particular theory.  For a given beam problem, the different elements will often produce quite 

different results and often mesh refinement is required in order to home in on the theoretical 

solution.   

 

This challenge presented two problems, the first of which was used as a software verification 

problem.  Based on the mesh independence of the p-type refinement study conducted on the first 

problem, the same mesh was used for a design problem in which the load was moved from the 

centre to the three-quarter point.  However, the results for the design problem created using the 

software function for tabulating element data showed moments different to those reported at the 

nodes.  The difference observed in the results led to the challenge of determining the quantities of 

engineering interest, maximum deflection and moment, for the design problem. 

Two Beam Theories 

The primary actions seen in beams are shear and bending.  For ‘thin’ beams, where the span to 

thickness ratio is large, the deformations are predominantly due to bending.  However, as the span 

to thickness ratio decreases then deformations due to shear become significant and need to be 

accounted for both in terms of deflections.  The Euler-Bernoulli (EB) theory ignores shear 

deformation and is thus appropriate to ‘thin’ beams whereas the Timoshenko theory includes a 

representation of shear deformation and is thus appropriate for thicker beams.   

The kinematics of the two beam formulations differ.  Both formulations assume that plane sections 

remain plane but whereas the EB formulation assumes that sections normal to the neutral axis in the 

undeformed state remain so in the deformed state, this condition is relaxed for the T formulation as 

illustrated in Figure 2.  

 

Figure 2: Euler-Bernoulli and Timoshenko kinematic assumptions 

Theoretical Solutions to the Design Problem 

The EB solution for the design problem is available in many structural engineering texts and is 

presented in Figure 3.   
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Figure 3:  Euler-Bernoulli solution to the Design Problem 

Timoshenko solutions are less well published but may be found in such texts as: 

Cook et al, Concepts & Applications of Finite Element Analysis, 4th Edition, Wiley, 2002 

The theoretical solutions for the design problem using the two beam theories are shown in Table 1.  

Note that the in addition to the significant increase in the displacement under the load for the shear 

deformable theory, the statics, in terms of the shear forces and moments, also changes. 

Theory �� (kN) �� (kNm) �� (kN) �� (kNm) ���� (kNm) Δ��� (mm) 

Euler-Bernoulli 15.625 -4.688 84.375 -14.063 7.031 0.250 

Timoshenko 16.475 -5.112 83.525 -13.637 7.244 0.435 

Table 1:  Theoretical solutions for the Design Problem 

 

The theoretical displaced shapes (exaggerated by scale) for the two theories are shown in Figure 4. 

 
The difference in the displacement between the T and EB theories is shown to illustrate the nature of the deflection due to shear 

deformation.  It is, approximately, piecewise linear and so one might reasonably conclude that, like the EB theoretical solution, the T 

theory solution is also cubic in form. 

Figure 4:  Theoretical Displaced shapes for the Design Problem  
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Finite Element Solutions to the Design Problem 

Many finite elements have been formulated based on the two beam theories already discussed.  

Perhaps the most common beam element based on the EB theory is the two-noded, Hermitian 

element which interpolates displacement as a cubic polynomial, i.e., it is capable of modelling the 

linear bending moments of the design problem exactly.  In terms of the T theory then there is more 

variation in the formulation of available elements.  The most widely available element is, perhaps, 

that based on the Mindlin formulation.  This element is often of variable degree and interpolates 

both the displacement and rotations in the same manner, e.g., if the element is a linear element 

(p=1) then both displacements and rotations are interpolated linearly.  The FE code used to generate 

the results for this response was of the Mindlin formulation with linear, quadratic and cubic degrees. 

It is worth noting that a finite element system should only require a single beam element if the same 

element could be used reliably for both ‘thick’ and ‘thin’ beams.  There is, however, a numerical 

issue with conforming (displacement) finite elements (CFE) formulated on T theory when the beam 

becomes ‘thin’.  This issue is known as shear-locking and it can pollute the results of ‘thin’ beams.  

For this reason many FE systems offer elements based on both beam theories and this at least allows 

the engineer to compare the results produced for both theories and confirm whether or not shear-

locking is influencing the results. 

FE results, using a two element mesh of variable degree Mindlin elements, for both the problems 

considered in the challenge are presented in Tables 1 and 2. 

Shape Function �� (kN) �� (kNm) �� (kN) �� (kNm) ���� (kNm) Δ��� (mm) 

Linear (p=1) 50.00 -12.50 50.00 -12.50 +12.50 0.45285 

Quadratic (p=2) 50.00 -12.50 50.00 -12.50 +12.50 0.82904 

Cubic (p=3) 50.00 -12.50 50.00 -12.50 +12.50 0.82908 

Table 2:  Convergence of quantities for the Software Verification Problem with two elements 

 

Shape Function �� (kN) �� (kNm) �� (kN) �� (kNm) ���� (kNm) Δ��� (mm) 

Linear (p=1) 20.834 7.292 79.166 11.458 8.334 0.28551 

Quadratic (p=2) 16.485 5.112 83.525 13.638 7.244 0.43487027 

Cubic (p=3) 16.485 5.112 83.525 13.638 7.244 0.43487027 

Table 3:  Convergence of quantities for the Design Problem with two elements 

 

It is seen (Table 2) that whilst the shear forces and moments do not change with p-type refinement, 

the displacements under the load do.  There is a significant change between p=1 and p=2 and only a 

small change, in the fifth significant digit, for p=3.  The assumption, made in the challenge, that mesh 

independence was obtained for p=1, is clearly erroneous.   

For the design problem, with the load at the three-quarter position, both shear forces, moments and 

displacements change as the element degree is increased between linear and quadratic.  However, 

mesh independence does appear to be observed as the results for the cubic element are identical to 

those for the quadratic element.    
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Discussion 

In the design problem the beam is moderately thick with a span to thickness ratio of 10 and the 

maximum deflections are 0.32 and 0.47mm respectively for the EB and T theories.  Thus, if the EB 

displacement had been taken, the maximum deflection would have been underestimated by some 

30% and this could make the difference between the beam passing and failing an SLS check on 

maximum deflection. 

Theoretical solutions for the design problem were obtained using both beam theories.  For both 

theories the maximum deflection was seen to occur away from the point load, at 0.60m and 0.65m 

respectively for the EB and T theories.  Many commercial FE systems only report displacements at 

nodes and unless the maximum displacement occurs at the node then it will not be available to the 

engineer.  The theoretical EB solution for the design problem can, as already noted, be recovered 

exactly using two cubic Hermitian beam elements.  However, in order to recover the maximum 

displacement the engineer would have had to perform mesh refinement to ‘home in’ on the 

maximum displacement.  This is an example of how poorly implemented post-processing in 

commercial software can frustrate the engineer’s task.  Had the engineer (erroneously) used an 

element based on EB theory and taken the maximum displacement from a two element model then 

he would have obtained 0.25mm which is almost 50% below the correct value!  Of course, if one is 

adopting an inappropriate mathematical model in addition to not picking up the maximum 

displacement then simulation governance, the matching of numerical simulation with measured 

results, will be impossible. 

The design problem is hyperstatic (statically indeterminate) thus the different kinematic 

assumptions of the two beam theories, which result in different beam stiffnesses, also, in addition to 

the displacements, lead to the different forces and moments.  Both sets are, however, in equilibrium 

with the applied load.  The maximum moment for both theories is at the right hand support and it is 

seen that the EB theory predicts a moment of 14.06kNm whereas the T theory is about 3% less at 

13.64kNm.  In an Allowable Stress Design approach, this difference would lead to different factors of 

safety but in a ULS calculation of the plastic limit load, the collapse load would be unchanged.  

For this response, a variable degree Mindlin element was used to model the Timoshenko beam 

theory.  The advice offered by the vendor for this element is that the quadratic (p=2) element is 

capable of representing linearly varying bending moments exactly.  The results almost bear this out 

except that there is a small difference in the displacement under the load for the Software 

Verification Problem – see Table 2 – as the degree is increased from quadratic to cubic.  The quality 

of the result for the p=2 Mindlin element is though somewhat surprising since we know, from the 

theoretical solution shown in Figure 4, that the displacement field is more or less cubic.  In 

investigating this apparent anomaly further, the displacement for a three-noded, quadratic Mindlin 

element was compared with the exact Timoshenko solution – see Figure 5.   
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The exact Timoshenko displacement is shown for the design problem together with the result for the single p=2 Mindlin element.  The FE 

displacements are, by definition, quadratic and cannot fit the exact cubic shape.  The quadratic result does however appear to fit exactly 

at the nodes.   

Figure 5:  Comparison of theoretical displacements with quadratic Mindlin element 

The nodal displacements are, more or less, exact but clearly since they are quadratic then between 

nodes there is significant discrepancy.  The moments inside the element are examined to see 

whether or not they agree with those reported at the nodes - Figure 6. 

 

  
 

(a) Linear (p=1) (b) Quadratic (p=2) 

 

Figure 6:  Comparison of nodal moments and those extrapolated from integration points 

In the case of the linear Mindlin element, a single integration point is used and so the variation of 

the internal moment field is assumed to be constant.  This leads to significant differences between 

the internally generated moments and the nodal moments.  Whilst the nodal moments are in 

equilibrium with the applied load, the internal moments, extrapolated from integration points, are 

clearly not.  For the quadratic element two integration points are used and it is seen that these 

appear to be exact as a linear extrapolation to the nodes leads to the same values as the nodal 

moments. 

Thus, in responding to the challenge, it might be noted that with a two-element mesh of quadratic 

Mindlin elements, a very close approximation to the theoretically exact solution is obtained.  It is 

noted, however, that the maximum displacement is not available from this mesh and it has already 
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been noted how this inadequacy might stymy the engineer’s task.  The same is, of course, true for 

moments.  It is rather easy to construct a problem where the maximum moment occurs somewhere 

between nodes.  Thus both serviceability and ‘strength’ calculations, based on maximum moment, 

might be compromised for the engineer by the inadequacies of commercial software. 

In closing this response, it is important to recognise a potential cause of finite element malpractice 

when using Mindlin type elements.  It was observed, for the design problem, that had a linear 

element been used then the internal moments (extrapolated from integration points) would not 

have been the same as the nodal values – in this example they would have been significantly less 

than the true values - see Figure 6(a).  The erroneously underestimated moments would lead, in an 

Allowable Stress Design, to an overestimation of the factor of safety and this is clearly of concern to 

the engineer. 

The reason that this point is mentioned is that in some industries the standard technique for 

assessing structural members is based on internal stress resultants extrapolated from integration 

points.  As demonstrated in this response, if degree of the element is not appropriate for the loading 

seen by the beam then this approach can lead to significantly erroneous stress resultants that 

would, under code assessment, give an erroneous view of the safety of the structure.   

The solution to this potentially significant issue, is to always use stress resultants calculated directly 

at the nodes from the basic equilibrium equations.  These are guaranteed to be in equilibrium with 

the applied loads even if the degree of the element is inappropriate to the applied loading, and 

provided sufficient mesh refinement (either/both p-type and h-type) has been undertaken then 

these resultants will form an appropriate set on which the structure can safely be assessed.   

   


