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Large Thermal Strains in Finite Element Analysis 

Introduction 

The practising engineer will probably be familiar with the idea of thermal expansion or contraction of 

structural members or mechanical components.  If this deformation is constrained then stresses will 

be induced in the member or component.  In finite element (FE) analysis the idea of thermal 

expansion/contraction can be used as a rather straightforward device to model a number of 

phenomena.  The interference fit between rotating components, for example, is a good example 

where the standard small thermal strain approximation is generally appropriate.  There are other 

cases where the use of the small thermal strain approximation can lead to significant errors.  For 

example, the extension/contraction of a hydraulic ram can be modelled as an axial element with 

temperature change used to control the ram length.  In this case it is necessary to adopt the proper 

thermal strain equation in order to obtain accurate results in an FE model which includes large 

displacements and rotations.  This technical note reminds readers of the difference between the small 

and large thermal strain theories and presents examples where small strain theory is appropriate and 

where large strain theory is required to obtain the correct solution.   

Interference Fit using Small Thermal Strain Theory 

It is common practice in finite element (FE) analysis to use thermal expansion/contraction to model 

the influence of a shrink or interference fit between a rotating component and the shaft onto which 

it is fitted.  Such interference fits are used to ensure that the rotating component, e.g., a pulley wheel, 

and the shaft remain in contact at speed (when the rotating component is growing radially at a greater 

rate than the shaft) and that the appropriate torque can be transmitted between the two 

components; the torque being transmitted through friction between the two components.  In this 

context, the interference is usually small compared to the nominal radius and a linear-elastic analysis 

is usually appropriate.  The choice of the coefficient of linear thermal expansion, a term which is often 

shortened to coefficient of expansion, is, in this case, normally assumed to be independent of 

temperature and is somewhat arbitrary provided that the product of the coefficient of expansion and 

the temperature change produces the required interference. 

In a recent project, RMA was asked to checked the fit for a pulley and supported on two bearings – 

see Figure 1. 

 

Figure 1: Axisymmetric model of pulley and the outer races of two bearings 

The radial interference at the nominal radius, ��, between the bearing and pulley is shown in Figure 2.   
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Figure 2: Bearing/Pulley interference fit 

The symbol � is used for radial displacement and from the radial tolerances on the components lies 

in the range ���� ≤ � ≤ ����.  Small thermal strain theory gives the radial strain, 	
, as shown in Eq. 

(1). 

 

	
 = �
�� = �∆�  (1) 

 

The range of interference values for the pulley are shown in Figure 1.  Note that these are in micro 

meters, i.e., they are small compared to the interface radius, which is 70mm, and lead to radial strains 

of 0.036% and 0.05% respectively.  The standard understanding of small strain theory is that it is 

appropriate for strains that are significantly less than 1%, i.e., 	 ≪ 1% and it is seen that this condition 

is met.  Using a coefficient of thermal expansion of 11.5µm/m/oC gives the temperature changes 

shown in Figure 1. 

Large Thermal Strain Theory 

The incremental expression for the thermal strain is given in Eq. (2) in terms of the change in length 

��, of an element of length � subject to an incremental temperature change, ��.  The constant of 

proportionality is �, the coefficient of linear thermal expansion and this is normally a function of 

temperature.  

  

��
� = ��� 

 (2) 

 

For a finite rather than infinitesimal temperature change from an initial temperature �� to a final 

temperature �� the change in length from the initial length �� to the final length �� is obtained by 

integrating Eq. (1) as indicated in Eq. (3).  
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Since the thermal strain is being used as a device for creating a prescribed displacement then we can 

reasonably adopt a coefficient of expansion that is independent of temperature, i.e., � � ����.  
Performing the integration of Eq. (3) leads to the expression given in Eq. (4) where the symbol �� is 

the natural logarithm of the function in brackets.  

 

�� �1  ∆��� ! = �∆� 
∆� = �� " ��  and  ∆� = �� " ��  

 

(4) 

 

Eq. (4) may be rearranged to determine the overall thermal strain as shown in Eq. (5).  

 

∆�
�� = #

$∆� " 1 
 

Large thermal strain (exact) 

(5) 

 

When the product α∆T is small then Eq. (5) tends to the usual linear expression given in Eq. (6).  

 

∆�
�� = α∆T 

 

Small thermal strain (approximation) 

(6) 

 

The relative error in using the linear expression of Eq. (6) is shown in Eq. (7) and has been plotted on 

log-log axes in Figure 3. 

 

#��'� = #
$∆� " 1 " α∆T
#$∆� " 1  

 

 

(7) 

 

 

Figure 3: Error in thermal strain when using the linear approximation 
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An engineer might be prepared to accept a 1% error in his calculation and to ensure that this is not 

exceeded then the product α∆T should not exceed about 0.01, i.e., the thermal strain should not 

exceed about 1%.  Thus, for the case of the interference fit considered earlier, the thermal strain was 

about 0.05% which leads to an error in of between 0.02 and 0.03%, i.e., a trivial error in engineering 

terms.   

Hydraulic Ram Displacement using Large Thermal Strain Theory 

RMA was recently involved in a project where a thermal expansion/contraction was used to drive a 

mechanism.  The mechanism in question was a scissor lift the height of which is controlled by a 

hydraulic ram.  The length of the ram, which might reasonable be modelled as a single axial element, 

can be adjusted by thermal expansion or contraction.  There is, however, a significant difference here 

compared to the use of this approach for the interference fit between rotating component and shaft.  

The difference is that in order to drive the scissor mechanism from it lowest to its highest position 

requires a significant extension of the hydraulic ram.  The members of the scissor lift translate and 

rotate by a significant amount, as does the ram, and this may only be considered using a non-linear FE 

approach which includes the effects of large displacements and rotations. 

The scissor lift mechanism is shown in Figure 4 and shows the lift in the position where the FE model 

was built (member angles of 45o) and in a raised position (blue) resulting from a temperature increase 

of 100oC applied to the ram. 

 

 

Figure 4: Hydraulic ram driving scissor mechanism 
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By considering the geometry or kinematics of the mechanism, a relationship between the height, ℎ, 

of the lift and the length of the hydraulic ram, �, may be obtained, i.e., � = +(ℎ).  Thus, for a given lift 

height the ram length can be determined.  The scissor lift under consideration had members that were 

about 5m in length and for this lift the (non-linear) relationship between ram length and lift height is 

shown in Figure 5.  

 

Figure 5: Ram length as a function of lift height 

The temperature change required to achieve a given lift height calculated from Eq. (4) and Eq. (5) are 

shown in Figure 6 with the orange line corresponding to the exact value and the grey line to the 

approximate value.   

 

Figure 6: Temperature change as a function of lift height 
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The FE model was constructed so that the members are angled at 45o and in this configuration the 

height of the lift is 10.61m and the ram length is 5.2711m.  If we were interested in raising the lift by 

1.80m to a height of 12.41m then the required ram length is 5.8255m which can be achieved with a 

temperature change of 100oC for a thermal expansion coefficient of 0.001 µm/m/oC. 

Closure 

Large strain theory gives a thermal strain greater then small strain theory!  The rule then might be to 

calculate the thermal strain using small strain theory and if it is greater than 1% the engineer should 

adopt large strain theory. 

This technical note reports a case where it is necessary to account for large displacements and 

rotations in a FE analysis.  Thermally induced expansion is used to model the change in length of a 

hydraulic ram which raises or lowers the scissor lift.  The change in length of the ram is significant 

when compared to the length of the ram and so the thermal strains required are large, i.e., much 

greater than 1%.  Since the FE model includes large displacements, the accurate thermal strain theory 

must be adopted when working out the temperature change to apply to the element representing the 

hydraulic ram.   

  


