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SUMMARY 

A comparative study of error estimators using a patch recovery scheme with those using simple nodal averaging is made 

for the four-noded Lagrangian quadrilateral element through two plane stress elasticity problems.  It is demonstrated that 

error estimators using a patch recovery scheme are generally more effective and have an estimated stress field that is 

closer to the exact one than those using simple nodal averaging. 

 

1.  INTRODUCTION 

Over recent years a number of error estimators for estimating the error in a standard displacement method finite element 

approximation have been proposed.  Of these methods those that estimate the error through the construct of a continuous 

estimated stress field have received much attention1,2.  For these error estimators the estimated stress field is achieved 

by interpolating a set of unique nodal stresses over the element with the same basis functions used to interpolate 

displacements in the original analysis.  Different methods for achieving the unique nodal stresses then result in different 

estimated stress fields and, therefore, different estimates of the error.  This paper compares error estimators for which 

the unique nodal stresses are achieved by simple nodal averaging with those that use a patch recovery scheme2.  

Numerical results for two problems in plane elasticity are reported for the standard four-noded Lagrangian element. 

 

2.  ESTIMATING THE ERROR WITH CONTINUOUS ESTIMATED STRESS FIELDS 

The continuous estimated stress field %σσσσ  is constructed from the discontinuous finite element stress field σσσσ h  by 

interpolating a set of unique nodal stresses s  over the element using the same basis functions as those used for the 

interpolation of the displacements in the original analysis: 

%σσσσ = Ns                                                                              (1) 

This process is shown for a single component of stress in Figure 1. 

                

          (a) Discontinuous σσσσ h                        (b) Unique nodal stresses                         (c) Continuous %σσσσ  

 

Figure 1. Transforming from a discontinuous σσσσ h  to a continuous %σσσσ  by interpolating unique nodal stresses s over an 

element with the basis functions for the element 

The error in the finite element stress field σσσσ e  is the difference between the true stress field σσσσ  and the finite element 

stress field σσσσ h : 

σσσσ σσσσ σσσσe h==== −−−−                                                                           (2) 
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In cases where the true stress field is unknown it is replaced by the estimated stress field %σσσσ  (the tilde is used to indicate 

estimated quantities) and the estimated error in the finite element stress field %σσσσ e  is defined as: 

% %σσσσ σσσσ σσσσe h= −                                                                         (3) 

These distributions of error can be integrated over an element to form a single number representing the error in that 

element.  The strain energy of the error Ue  for element i is:  

∫=
V

ei

T

eiei dVU εσ
2

1
                                                                 (4) 

and, for the estimated error, the strain energy of the estimated error %Ue  for element i is: 

∫=
V

ei

T

eiei dVU εσ ~~

2

1~
                                                                 (5) 

where εεεε e  and %εεεε e  represent strain fields corresponding to σσσσ e  and %σσσσ e  respectively and V represents the volume of 

element i. 

 

For a mesh of ne elements the total error is simply the summation of all elemental contributions: 

U Ue ei
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=
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∑
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                                                                         (6) 

and     

% %U Ue ei

i
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=
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∑
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                                                                        (7) 

The effectivity of an error estimator is then measured by the effectivity ratio β  which is defined as: 

ββββ =
%U

U

e

e

                                                                          (8) 

The closer the effectivity ratio is to unity, the more effective the error estimator. 

 

The philosophy of error estimation presented above follows that given in Reference 3 in which strain energy quantities, 

as opposed to energy norm quantities, are used to define the effectivity of an error estimator.  The effectivity index θ  of 

Reference 1 is related to the effectivity ratio of equation (8) as θ β= . 

 

Because of the integral nature of the quantities involved in the effectivity ratio, it is possible for different estimated 

stress fields to yield the same effectivity ratio.  In order to distinguish between such estimated stress fields a further 

quantity is introduced.  The error in the estimated stress field 
)
σσσσ  is defined as the difference between the true stress field 

σσσσ  and the estimated stress field %σσσσ : 

)
σσσσ σσσσ σσσσ= − %                                                                              (9) 

The strain energy of the error in the estimated stress field 
)

U  for element i is then: 

dVU
V

i
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2

1
                                                                 (10) 

and, for a mesh of ne elements: 
) )

U U i

i
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=
=

∑
1

                                                                      (11) 

The smaller the value of 
)

U  the closer the estimated stress field is to the true stress field. 
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3.  CO-ORDINATE SYSTEMS FOR THE PATCH RECOVERY SCHEME 

In the patch recovery scheme as proposed by Zienkiewicz and Zhu2 the unique nodal stresses s are obtained for each 

node by fitting a polynomial stress surface σ p  through the superconvergent (stress) points surrounding a particular node 

in a least squares manner.  This idea is shown schematically in Figure 2.  For the element under consideration there is a 

single superconvergent point at the isoparametric centre of the element4. 

                                           

stress surface σP

  

Figure 2.  Patch recovery scheme for a patch of four elements 

 

The stress surface for a particular component of stress is defined as: 

σσσσ p Pa=                                                                             (12) 

where P is a row vector of polynomial terms and the parameters a are obtained by a least-square fit of the stress surface to 

the set of superconvergent stress points in the patch considered. 

 

The terms used in the row vector P could be those corresponding to those used in the basis functions i.e. the incomplete 

bi-linear polynomial terms P= 1, , ,x y xy  or they could be those that form a complete linear polynomial i.e. P= 1, ,x y  

where x and y are ordinates in the global Cartesian co-ordinate system.  In their original paper2 Zienkiewicz and Zhu 

suggest that the incomplete bi-linear polynomial terms may give better results and should therefore be used. 

 

In a subsequent paper5 it was recognised that the use of the global co-ordinate system could result in numerical 

difficulties in evaluating the parameters a.  In order to overcome this problem the use of a locally normalized Cartesian 

co-ordinate system ( , )x y , as shown in Figure 3, was recommended5.  However, recent studies6 have shown that although 

this modification is sufficient to overcome the numerical difficulties occurring when using a complete linear polynomial 

stress surface, it is not sufficient to overcome the problems associated with the orientation of the patch in the global co-

ordinate system when the incomplete bi-linear polynomial is used.  These difficulties are fully explained in Reference 6 

and in this article the parent patch concept is developed in which the stress surface is defined in terms of the ordinates of 

a curvilinear co-ordinate system ( , )ξ η  as shown in Figure 3.  Use of the parent patch concept avoids the problems 

associated with the orientation of the patch. 
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Figure 3. The parent patch and associated co-ordinate systems 

 

4. THE ERROR ESTIMATORS 

Different methods for obtaining the unique nodal stresses s will result in different estimated stress fields %σσσσ  and, 

therefore different values for β  and 
)

U .  In this paper we shall compare three error estimators that use a patch recovery 

scheme with one that uses simple nodal averaging of the finite element stresses at a node.  These error estimators are 

now defined. 

 

Error estimator EE2: the unique nodal stresses are determined by simple nodal averaging1 of the finite element nodal 

stresses recovered at the nodes through bi-linear extrapolation from 2x2 Gauss points7.  This error estimator was 

discussed in detail in Reference 3. 

 

Error estimator EEL: the unique nodal stresses are obtained from a patch recovery scheme using a locally normalized 

Cartesian co-ordinate system5 and a complete linear polynomial definition for the stress surface. 

 

Error estimator EEb: the unique nodal stresses are obtained from a patch recovery scheme using a locally normalized 

Cartesian co-ordinate system5 and an incomplete bi-linear polynomial definition for the stress surface. 

 

Error estimator EEp: the unique nodal stresses are obtained from a patch recovery scheme using a locally normalized 

curvilinear co-ordinate system6 and an incomplete bi-linear polynomial definition for the stress surface. 

 

For error estimators which use a patch recovery scheme the nodal stresses at the boundary of the model are recovered by 

extrapolation from the nearest appropriate internal patch as recommended in References 2 and 10 and shown 

schematically in Figure 4.  The integration of all strain energy quantities is performed using 2x2 Gauss quadrature which 

is exact for parallelogram shaped elements. 
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extrapolation to corner boundary node

extrapolation to ordinary boundary node

interpolation to internal node

 

Figure 4.  Recovery of boundary stresses through use of an internal patch 

 

5.  NUMERICAL STUDIES 

The performance of these error estimators will be evaluated through two plane stress elasticity problems which have 

known analytical solutions.  The integral quantities β  and 
)

U  will be compared and the pointwise quality of the 

estimated stress field %σσσσ  examined.  The models were restrained against rigid body motion and loaded with consistent 

nodal forces. 

 

5.1. Problem 1 

Figure 5 shows a rectangular continuum subjected to static boundary conditions consistent with a linear stress field. 
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     (a) The problem             (b) The meshes 

Figure 5. Problem 1 

 

For this problem the analytical solution in stress is: 

 
σ

σ

τ

x

y

xy
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=

=

30

0

0

                                                             (13)

 

 

With a Young's Modulus of E N m= 210 2 , a Poisson's Ratio of ν = 0 3.  and a material thickness of t m= 0 1.  the exact 

strain energy is U Nm= 2500 7/ . 

The quality of the recovered stresses will be considered at Points A & B in the model (see Figure 5).  Since the exact 

values of the σ y - and τ xy- components of stress are zero at these points only the σ x -component of the stress will be 

considered.  The σ x - component of the recovered stress at Points A & B are tabulated in Table I and the convergence of 

the error in the recovered stress is shown in Figure 6.  In this figure the gradient of selected curves n is indicated and a 
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triangular wedge indicating the superconvergent rate of convergence (n=2) is also shown.  The quantities β  and 
)

U  are 

shown in Table VI. 

 

Table I. Convergence of σ x - component of the recovered stress at Points A and B  for Problem 1. 

For Point A the exact value is σ x N m= 150 2 whilst for Point B the exact value is σ x N m= 75 2  

  Point A Point B 

Mesh h %σ 2  %σ L  %σ b  %σ p  %σ 2  %σ L  %σ b  %σ p  

1 10/1 111.70 106.43 106.43 106.43 \ \ \ \ 

2 10/2 135.60 136.61 134.39 134.39 69.62 68.47 68.47 68.47 

3 10/4 143.92 144.70 142.29 142.29 73.48 73.30 73.30 73.30 

4 10/8 147.05 147.39 146.10 146.10 74.57 74.56 74.56 74.56 

 

In Table I the h is taken as the x-dimension of an element. 
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  (a) Point A     (b) Point B 

Figure 6. Convergence characteristics of error in recovered stress for Problem 1 

 

5.2. Problem 2 

In this problem the classical case of an unstressed circular hole centred in an infinite membrane under a uniform tension 

of amplitude σ ∞  in the x-direction is considered.  A finite portion of this membrane is considered as shown in Figure 7a 

and a symmetric quarter of this finite portion is modelled as shown in Figure 7b. 
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  (a) The geometry     (b) The meshes 

Figure 7. Problem 2 

 

 For this problem the analytical solution in stress8 is given as: 
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For a Young's Modulus of E N m= ×10 10 6 2 , a Poisson's Ratio of ν = 0 25.  and a material thickness of t m= 0 01.  the 

exact strain energy is U Nm= 5 18844845. 9  and is accurate to the number of digits quoted.   

 

For this problem there is a stress concentration in the σ x - component of the stress at Point A (r m= =2 2, /θ π ) and the 

way in which this component of the recovered stress converges at this point, is shown in Table II.  For the internal point, 

Point B (r m= =5 4, /θ π ) all three components of the exact stress are non-zero and the components of the recovered 

stresses for this point are shown, respectively, in Tables, III, IV and V. 

 

 

Table II. Convergence of σ x - component of the recovered stress at Point A for Problem 2. 

The exact value is σ x N m= 30 000 2, . 

Mesh σ h  %σ 2  %σ L  %σ b  %σ p  

1 23004.2 20539.2 10884.6 13191.6 17979.5 

2 26973.0 25269.4 17585.2 22776.8 23065.2 

3 29522.9 28681.2 23942.2 26270.3 26386.8 

4 30325.9 30012.9 27813.2 28451.1 28468.5 
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Table III. Convergence of σ x - component of the recovered stress at Point B for Problem 2. 

The exact value is σ x N m= 11216 02 2. . 

Mesh σ h  %σ 2  %σ L  %σ b  %σ p  

1 9762.57 9477.41 10016.48 10094.42 10016.80 

2 10829.13 10734.18 10684.81 20687.06 10684.87 

3 11118.59 11090.96 11044.98 10924.94 11045.89 

4 11206.11 11198.52 11168.79 8313.12 11168.16 

 

 

Table IV. Convergence of σ y - component of the recovered stress at Point B for Problem 2. 

The exact value is σ y N m= −1216 02 2. . 

Mesh σ h  %σ 2  %σ L  %σ b  %σ p  

1 -296.46 -309.10 -63.50 -69.85 -63.49 

2 -912.96 -879.23 -714.62 -2366.91 -714.66 

3 -1111.68 -1100.11 -1053.74 -1061.11 -1053.96 

4 -1189.42 -1186.14 -1172.12 -773.15 -1172.34 

 

Table V. Convergence of τ xy- component of the recovered stress at Point B for Problem 2. 

The exact value is τ xy N m= −800 02 2. . 

Mesh σ h  %σ 2  %σ L  %σ b  %σ p  

1 -784.60 -701.17 -716.11 -694.50 -716.21 

2 -770.92 -752.55 -740.15 -3439.73 -739.96 

3 -782.20 -777.39 -784.89 -843.67 -784.75 

4 -790.58 -789.29 -796.26 -449.37 -796.81 

 

Note that in Tables II - V σ h  is the nodal average of the finite element stresses evaluated directly at the node. 

 

For this problem, where uniform mesh refinement is not employed, the various recovered stresses considered are simply 

plotted against the mesh number as shown in Figure 8. 
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         (a) σ x  at point A         (b) σ x  at point B 
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         (c) σ y  at point B         (d) τ xy  at point B 

Figure 8. Convergence characteristics of error in recovered stress for Problem 2 

 

The way in which the integrated quantities β  and 
)

U  converge for Problems 1 & 2 is shown in Table VI. 

 

Table VI. Convergence of β  and 
)

U  for Problems 1 & 2. (
)

U  has units of Nm) 

Problem Mesh β 2  β L  β b  β p  
)

U2  
)

U L  
)

Ub  
)

U p  

 1 0.710 0.710 0.710 0.710 103.73 30.13 30.13 30.13 

1 2 0.907 0.900 0.913 0.913 17.56 3.03 3.28 3.28 

 3 0.972 0.969 0.972 0.972 2.341 0.256 0.281 0.281 

 4 0.992 0.991 0.992 0.992 0.2933 0.0195 0.0211 0.0211 

 1 0.2768 1.3825 3.8637 1.5718 0.1498 0.3148 0.6412 0.2731 

2 2 0.4456 0.7521 3238.3 0.6814 0.0469 0.0526 171.67 0.0453 

 3 0.5855 0.7831 9.3791 0.7358 0.0115 0.0097 0.157 0.0091 

 4 0.7054 0.7974 398.06 0.7839 0.0023 0.0012 1.9318 0.0012 

 

6.  DISCUSSION OF RESULTS AND CONCLUDING REMARKS 

An examination of the results for Problem 2 show clearly the effect of the problems associated with orientation 

dependence for EEb: the recovered stress at Point B and β  and 
)

U  tend to give rather exotic results (Reference 6 gives a 

clear account of the reasons for this phenomenon).  By comparing these results with those for EEp it is seen that the use 

of the parent patch concept removes these problems. 
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In terms of the integrated measures β  it is seen for Problem 1 that all error estimators considered are virtually as 

effective as each other.  However, in terms of 
)

U  it is seen that those error estimators employing a patch recovery scheme 

have estimated stress fields that are significantly closer to the exact one than EE2.   

 

For Problem 2 it is observed that, for those error estimators using a patch recovery scheme the error estimation for Mesh 

1 is poor.  The reason for this lies in the fact that for this mesh all nodal stresses are recovered from a single patch.  For 

subsequent meshes it is seen that the effectivity of these error estimators is better than that for EE2.  In terms of 
)

U  it is 

seen that whilst for Meshes 1 and 2 
) ) )

U U Up L2 < < , for Meshes 3 and 4 EEL and EEp perform better than EE2 with, for 

Mesh 4, 
) ) )

U U Up L= ≈
1

2
2 .   

 

Turning now to the quality of the recovered stress at the chosen points of interest we observe that: 

 

i) for Problem 1, although as the mesh is refined the difference becomes small, %σσσσ 2  is closer to the true value than those 

recovered using a patch recovery scheme i.e. than % , % %σσσσ σσσσ σσσσL b p and .  For all error estimators the rates of convergence of 

the recovered stresses are virtually identical with superconvergence observed only for internal nodes. 

 

ii) for Problem 2 the quality of the recovered stress at the point of stress concentration (Point A) is strongly dependent 

on the scheme used to recover the stress9.  It is seen that at this point the patch recovery schemes fair badly with the %σσσσ 2  

being significantly closer to the true value than % , % %σσσσ σσσσ σσσσL b p and .  It is noted also that the basic finite element value σ h  

(evaluated directly at the node) is the closest of all values. 

 

Thus three conclusions are made: 

 

i) if one wishes to use a bi-linear polynomial stress surface then the problem associated with orientation dependence can 

be avoided through the use of the parent patch concept.  However, as the results presented have shown, although there is 

a difference in the results between EEL and EEp this difference is small and, therefore, one might be tempted to 

recommend the use of a linear polynomial stress surface. 

 

ii) the results show that in terms of the effectivity ratio those error estimators employing a patch recovery scheme are 

equally or more effective than those using simple nodal averaging.  In an integrated sense (
)

U ) the estimated stress field 

resulting from a patch recovery scheme can be significantly nearer to the exact stress field than that resulting from 

simple nodal averaging. 

 

iii) although, in general, the estimated stress field resulting from a patch recovery scheme may be superior to that 

achieved by simple nodal averaging, this is not always the case for point values c.f. Point A in Problem 2.  
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