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Linear elastic theories of plates for in-plane (membrane) loading 

 

We need to understand the relations between stresses, both normal and shear components, 

and the corresponding strains and subsequent deflections of a plate. This understanding is 

essential in the use of finite element methods for the analysis of plates when treated as linear 

elastic structures. 

 
The in-plane (or planar) behaviour of a thin plate can be regarded as one of “plane stress”, i.e. we 

assume that there is no variation in stress through the thickness of the plate, and only the 3 planar 

components of stress are non-zero. So we now have a 2D problem. 

Compatibility of strains and displacements - stretching and shearing of a plate 

Each point in a plate has 2 degrees of freedom, described by components of displacement u and v in 

directions parallel to the x and y axes. It is convenient to use vectors and matrices when dealing with 

quantities which have many components, so: 

 

u = 








v

u
,  ε = 

































∂

∂

∂

∂
∂

∂
∂

∂

=





























∂

∂
+

∂

∂
∂

∂
∂

∂

=
















v

u

xy

y

x

x

v

y

u

y

v
x

u

y

x

0

0

γ

ε

ε

= ∂.u                                    (1) 

 

 

e.g.  
 

 

 

 

 

             direct strain component    εx                               shear strain γ 

Figure 1: strain components for 2D deformation 
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Equilibrium of stresses with body loads 

 

 

 

 

 

 

 

 

 

Moment equilibrium 
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Neglecting higher order terms involving dx.dx.dy we find  

 

( ) τττττ ≡==− yxxyyxxy dydxt    OR   0...                                                                                 (2) 
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Figure 2: stresses and body forces 
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Equilibrium of stresses with boundary tractions 

Force equilibrium 
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Hooke’s law for plane stress 
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Figure 3: boundary tractions 
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 Section 13.1.1 for plane stress. 

 

Use of finite elements for plane stress – formative exercise to familiarise students with Oasys GSA 

and learn about the significance of shear deformations in beams. 

 

 

 

 

 

 

 

Figure 4: deep beam problem with varying  span-depth ratios 

 

Guidance for using Oasys GSA version 8.3 in modelling rectangular plates. 
 

o Create a finite element model 

 

• Select Structure Type: Plane Stress and check default units or select different ones. 
 

• Note arrangement of axes, by default x and y lie in the plane of the structure and the z axis is 

positive out of the screen. Choose a point of your plate as the origin and choose the directions of 

the x,y axes for your Global Coordinate system. 
 

• Define 4 nodes at the corners of the rectangular plate – numbers and x,y coordinates, z = 0 by 

default. 
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• Define a single Quad 4 element connected to the 4 nodes. In the element table specify the Type 

as Quad 4, and input the node numbers under the Topology heading (use an anticlockwise 

sequence). 
 

• Define the material properties with one of the standard Properties, use “steel”. 
 

• Define 2D Element Properties 

• Input a name for 2D element property 1; Material: steel; and Thickness. 
 

• Split element as required to create a finer mesh of elements 

• Select the element(s) with the mouse after activating the “Select elements” icon in the 

left hand menu. 

• Select Sculpt from the top menu, followed by 2D Element Operations → Split Quad 

Elements… 

• Input the numbers of Splits (or subdivisions) required along the 2 edges which define the 

rectangle (Edge 1 connects the 1
st

 node in the sequence to the 2
nd

 etc., following the 

sequence defined by the Topology of the original element) – then Preview before 

accepting!! E.g. split the vertical sides into 10 elements, and the horizontal sides to 

conform with square elements. 
 

• Define supports  

• Select Nodes, Supports, and enter restraint direction in a Table 
 

• Define loads 

• Select Loading, Nodal Loading, Node Loads, and enter node number(s), direction(s) and 

value(s) of forces applied to nodes. 

 

• Analyse the model 

• Use the Σ  icon on the top menu.  

 

• Examine the output 

• Deflected shape – use the       button on the right hand side of the screen, also try 

animation with the button below. Deflections can be exaggerated or reduced by the use 

of the x2 or /2 buttons. 

• Select a column of nodes with a box in order to focus on the question of planarity, and 

zoom to enlarge view. Inspection should reveal the answer! 

• Display principal stress vectors in the complete structure by selecting the “Diagram 

settings” button on the right hand side. Then in the dialogue box select 2D Element 

Derived Stresses, and 2D Stress, Principal. Red vectors indicate tension and green 

vectors indicate compression. Use the x2 or /2 buttons to scale as appropriate.  

• Graphic views can be saved in different formats such as PNG or JPEG by selecting 

Graphics and then SaveImage. 

 

Student data for a steel deep beam, all beams of depth 2m and thickness 0.04m, and carry a central 

vertical load on the top edge of 1000kN.  
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Linear elastic theory of plates – Kirchhoff theory 
 

We now need to understand the relations between moments, both bending and twisting, and 

shear forces and the corresponding deformations and subsequent deflections of a plate. This 

understanding is essential in the use of finite element methods for the analysis of plates when 

treated as linear elastic structures. In Kirchhoff theory we neglect deformations due to 

transverse shear forces, as we often do in the case of beams. 
 

We can imagine a flat plate to be formed from a set of thin layers or laminas stuck together to form 

what is in reality a three dimensional structure. However if we can assume the thickness is relatively 

small, then we can proceed to assume that straight “fibres” aligned through the plate thickness 

normal to its surfaces remain straight after the plate has deformed. Furthermore we will assume 

that such fibres remain normal to the mid-surface of the plate. These sort of assumptions are similar 

to those commonly used for beams, i.e. plane sections remain plane. 

 

Bending and twisting of plates – compatibility of strains and curvatures/twists 

The deformed shape of a plate subjected to transverse loads can be thought of as occurring in beam 

strips where both bending and twisting becomes apparent, see Figure 5: 

 

 

 

Figure 5: deformed view of a bent plate – simulated by Oasys GSA. 
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The fibres which are initially normal to the mid-surface rotate about the x and y axes as the plate 

bends and twists. The corresponding components of rotation are denoted by ψy and ψx respectively, 

and are illustrated in Figure 6 where it is very important to note their meaning and their positive 

senses! 

 

 

 

 

 

 

 

 

 

 

Figure 6: reference axes and components of rotation and displacement 

The rotations produce displacements u and v in a lamina distance z from the mid-surface, and strains 

in the lamina: 
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  e.g.     where .            (6) 

 

We term rates of rotations ψx,x , ψy,y the “curvatures” in beam strips parallel to the x and y axes 

respectively, and (ψx,y + ψy,x) the “twist” in these beam strips. 

 

In Kirchhoff theory we assume that fibres normal to the mid-surface remain normal, so the rotations 

are equal to gradients of deflection w, i.e. curvatures and twists are also given by: 
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Hooke’s law in terms of moments and curvatures 

 

Stresses in a lamina are then expressed, as in plane stress, by: 
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Bending and twisting moments can be expressed as the stress-resultants: 
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Figure 7: stress distributions through the thickness and stress-resultants 
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D is usually termed the flexural rigidity of the plate in a similar way that EI is the flexural rigidity of a 

beam. 

Note: the significance of the sign convention (taken to agree with that used by RD Cook et al [2]), 

means that with the z axis vertically upwards sagging curvatures are positive, but sagging moments 

are negative! Troublesome maybe, but these are quite common conventions. 

 

Equilibrium for an infinitesimal plate element 

 

 

 

 

 

 

 

 

 

Figure 8: isometric view of stress-resultants and pressure load 

dy 

dx 

Qy 

Qx 

My 

Mx 

Mxy 

Mxy 

q 



Copyright © Ramsay Maunder Associates Limited 2004-2012 

 

12 

• Vertical equilibrium of an infinitesimal element at the intersection of x- and y- direction beam 

strips: 

 

Increase in shear force in x-beam strip = dydx
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 Figure 9: plan view of stress-resultants and pressure load 
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• Moment equilibrium about the x- axis 

 

Increases in bending and torsional moments about the x-axis in a y-beam strip are balanced by the 

couple formed by the Qy shear forces: ( )dydxQdydx
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• Moment equilibrium about the y-axis  in an x-beam strip 
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• Combining the moment equilibrium equations with vertical equilibrium, we get: 
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which leads on to governing partial differential equations in terms of displacements! Exact analytic 

solutions to such equations are sometimes possible, but for practical problems we usually resort to 

finite element methods. 

 

Boundary conditions 

These come in two forms: static, e.g. distributions of shear forces or moments and kinematic, e.g. 

distributions of deflections or rotations. An example of a square plate simply supported (i.e. having 

zero deflections and zero bending moments at its edges) and supporting a uniformly distributed load 

(UDL) is illustrated below, and demonstrates that it can span in two directions. Consequently the 

load can be shared in each direction, thereby approximately halving the bending moments that 

would occur from spanning in one direction only. 
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Plate spanning one way – note anticlastic   Plate spanning two ways with contour lines of 

curvature with ν = 0.34.                              deflection – note maximum bending moment 

                                                                     ≤ 50% of that from one way spanning. 

Figure 10: deflected shapes of one way and two spanning plates. 

 

When we consider purely static boundary conditions, we would expect to be able to specify 3 

components of traction as shown indicated by the bending moment Mn, the torsional moment Mns 

and the shear force Qn. 

 

 

 

 

 

 

 

 

 

 

 

Figure 11: static boundary conditions 

However, the assumption of no shear deformation leads the Kirchhoff theory to only allow 2 

independent boundary conditions, e.g. tractions, to be applied. This is a similar situation as for 

normal beam theory where 2 conditions are specified at each support. For plates this could be 

troublesome!  
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An anomaly 

Consider again the square simply supported plate. The boundary conditions are zero deflection and 

zero bending moment, and we keep quiet about the torsional moment!! What deflected shape do 

we expect? A form of dishing, and w,n (edge slope in the normal direction) isn’t zero and it changes 

along a supported edge towards the corner where it should be zero. This implies that w,ns is non-zero 

and so the torsional moment (proportional to the twist) should not be zero. An approximation to a 

solution based on Kirchhoff theory for a square plate with a UDL and simply supported on all 4 sides 

is shown in Figure 12 for a symmetric quadrant: 

 

 

 

 

 

 

 

 

 

 

Figure 12: quadrant of a simply supported square plate, vertical deflections and reactions 

 

We see that torsional moments are implied as part of the reactions (distribution shown by red 

vectors), and as the corner is approached the gradient of the torsional moment and the vertical 

shear reaction become zero. However, if we don’t apply horizontal shear stresses τns on the 

boundary face, then how can torsional moments be present? 

An answer to this is to argue that torsional moments could just as well be applied via couples formed 

by vertical shear forces (a narrow edge strip which is rigid with respect to shear stresses doesn’t 

know the difference!). The way we could proceed is to replace the distribution of torsional moment 

Mns along an edge between corners by a statically equivalent distribution of shear forces, and then 

apply the net shear forces. 
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Figure 13: statically equivalent Kirchhoff shear forces 

The net equivalent Kirchhoff shear forces then consist of a distribution of forces denoted by ( )sQn  

and a pair of concentrated forces Mns(1) and Mns(2) applied at the ends/corners 1 and 2, where: 

 

( ) ( )
( )

s

sM
sQsQ ns

nn
∂

∂
+=   and Mns(1) = Mns(s) at end 1, Mns(2) = Mns(s) at end 2.            (12) 

 

Replacement is carried out for the reactions shown in Figure 12, and results for the shear 

distribution and the total corner force are shown in Figure 14: 

 

 

 

 

 

 

 

 

 

 

Figure 14: distributions of shear forces 

 

Similar results are given in Timoshenko et al in Figures 63 and 81 [1]. 
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The problem lies in our assumptions, we can assume zero shear deformation throughout most of the 

plate, but local to the boundaries the behaviour is really governed by 3D stresses and strains for 

which zero shear deformation is inconsistent. 

A theory which begins to account for the 3D nature of the plate is due to Reissner-Mindlin, and their 

theory assumes that shear deformation can take place through the thickness of the plate – it is 

based on similar assumptions for shear as is used for relatively deep beams. As we will see we can 

then specify zero torsional moments at the supports, this produces the reactions and field of 

torsional moments within the plate as shown in Figure 15. We see that significant downward 

reactions act near the corner of the plate, which has some similarity to the Kirchhoff reactions 

shown in Figure 14. 

 

Figure 15: reactions and the internal field of torsional moments 

 

We may deduce from all these alternative distributions of reactions that if we remove reactions near 

the corner, then we should expect the plate to lift. And indeed we show this effect in Figures 16 to 

19 when reactions are released for 1m on both sides adjacent to a corner, whether we include 

torsional moments as reactions or not. 
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Figure 16: Deflection contours and vertical reactions after corner release.  

 

Figure 17: Contours of torsional moments  and vertical reactions after corner release.  

 



Copyright © Ramsay Maunder Associates Limited 2004-2012 

 

19 

 

Figure 18: Deflection contours and reactions (shear and torsional moment) after corner release 

 

 

Figure 19: Contours of torsional moments  and reactions after corner release.  
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Linear elastic theory of elastic plates - Reissner-Mindlin theory  
 

In this theory we make the first step to account for the 3D nature of a plate by making allowance in 

an approximate way for shear deformation through the thickness of a plate as well as bending and 

twisting deformations. The “fibres” that are initially straight and normal to the mid-surface are still 

assumed to remain straight, but they are given independent degrees of freedom to rotate about 

axes in the plane of the plate. Thus each fibre is given 3 degres of freedom:  transverse deflection w, 

and two rotations ψx and ψy. 

 

Curvatures are again defined by the first derivatives of the rotations in Figure 20, and the moment 

curvature relations as a form of Hooke’s law are unchanged, but remember that now we do not 

express curvatures as second derivatives of deflections. The additional aspect of Hooke’s law 

concerns the relations between shear forces and shear strains. 

 

 

 

 

 

 

 

 

 

 

Figure 20: rotations of fibres through the thickness of a plate. 

 

Transverse shearing of plate 

The distinction between Reissner-Mindlin and Kirchhoff plate theories rests on the inclusion 

or exclusion respectively of transverse shear deformation through the plate thickness. Both 

theories assume that normals to the midsurface remain straight. However Mindlin allows for 

a shear strain, i.e. a change of angle between the normal and the tangent to the midsurface, 

whereas Kirchhoff neglects such shear strains so that the normals remain perpendicular to the 

midsurface. 
The shear strain 

mid-surface plane 

z 

y 

x 

z z 

ψψψψy 

ψψψψx 

u = -z . ψψψψx 

v = -z . ψψψψy 
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 







−

∂

∂
= xzx

x

w
ψγ ,                                                                            (13) 

indicated by the symbol    in Figure 21, is treated as constant throughout the plate thickness. In 

Kirchhoff theory it is assumed that xzx
x

w
ψγ =

∂

∂
=  that i.e.  , 0 . 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 21: assumptions for shear stress and shear strain in Reissner-Mindlin theory 

 

In Reissner-Mindlin theory the shear strain γzx is accounted for, but note that there is an 

inconsistency between the assumption of a constant shear strain and the parabolic distribution of 

shear stress τzx as illustrated in Figure 21. The latter is required to satisfy equilibrium of stress 

according to engineer’s beam theory. 
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This inconsistency is resolved in a “weak” way by equating two expressions for virtual work 

developed in terms of the shear force stress-resultant Qx per unit width of a beam strip and the 

shear stresses τzx: 

γγγγzx 

Qx 

Qx 

ττττzx 

x 

z 

ψψψψx 

x

w

∂∂∂∂

∂∂∂∂
 

dx 
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( )( ) dx
t
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where G is the shear modulus defined by G = E/2(1 + ν). 

 

Thus                                             zxx GtQ γ⋅⋅=
6

5
                                                                (15) 

 

 

as indicated in Cook et al [1] Chapter 15, Equation (15.1-5) when k = 5/6. 

 

Simple supported boundary conditions 

Now that we have 3 independent degrees of freedom for each transverse fibre, the number of 

boundary conditions that can be specified at each point increases to 3. Thus at a loaded boundary, 

we can specify both components of moment (bending and twisting) and a shear force intensity. 

Furthermore at simple supports we specify zero transverse deflection w and bending moment Mn 

about the line of support, with a choice for the third condition. There are two alternative forms 

which result from using Reissner-Mindlin theory: termed “soft” and “hard”. “Soft” specifies zero 

twisting moment Mns , whereas “hard” specifies zero rotation ψs about the normal to the boundary 

in the xy plane. Which type of support best represents the physical problem requires your decision – 

Cook has words of wisdom in Section 15.5 [1]! 

 

It is important to appreciate that linear theory only works so long as the vertical deflections are very 

small. Otherwise in-plane forces can develop and plates tend to transmit loads in ways you may not 

have imagined [3]! 

 

Figures 22 and 23 refer to the non-linear elastic behaviour of a 2m square vertical glass plate with 

6mm thickness, simple supports and subjected to a uniform pressure of 1kN/m
2
. In this context 

“soft” implies that the edges have freedom to rotate in the torsional sense and freedom to move in 

the plane of the plate; whereas “hard” implies in this case that freedom of the edges to rotate is 

maintained but in-plane movement is fully constrained. 
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straight line for linear behaviour; soft conditions imply edge deflections, e.g. midside pull-in is 

unconstrained. 

Figure 22: load deflection curves for non-linear behaviour due to large deflections 

Contours of Mx kNm/m 

Contours of Nx kN/m 

(a)  contours for soft supports                                 (b)  contours for hard supports 

Figure 23: deflections (scalded x10) and contours of stress-resultants due to 1kN/m
2
 pressure. 

References 

x 
soft boundary conditions, 

maximum value =135.5kN/m 
hard boundary conditions, 

maximum value =151.5kN/m 
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Quad 4 element in Oasys GSA as a Reissner-Mindlin flat plate element. 

 

The formulation of this 4 noded element follows the description in Cook et al in Section 15.3 

with the same interpolation (or shape) functions for each component of deflection and 

rotation of the normals. These functions are those defined in page 97 of Cook, and repeated 

here for a rectangular element: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 24: 4 noded plate element 

 

The four shape functions (one for each corner node) are defined with bilinear forms: 
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Figure 25: isometric view of a shape function with a unit value at a corner node 
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We interpolate deflections at internal points from the nodal displacements given by Oasys GSA: 

 

( ) 44332211, NwNwNwNwyxw ×+×+×+×=  

 

( ) 44332211, NNNNyx xxxxy ×+×+×+×= θθθθψ                                                         (17) 

 

( ) 44332211, NNNNyx yyyyx ×+×+×+×=− θθθθψ  

 

where components of nodal rotation such as θx1 and θy1 at node 1 are defined by the right hand 

screw rule (their values are listed in output in columns headed Rxx and Ryy respectively), whereas 

components of rotation within an element are defined as in Figure 20. Thus at corner n of an 

element, ( ) ( ) xnnnyynnnx yxyx θψθψ =−= ,  and  , . 

 

Symbolically we express these relations in matrix form: u = N.d (ref Cook Equation (15.3-1)). 

 

What loads produce a deflected shape? These are usually quantified and represented by “nodal 

forces/moments” and the element stiffness matrix, e.g. see Cook Equation (15.3-4): 

f = k.d, where the components of f correspond to those of d, and ∫∫∫∫==== dABDBk MM
T
M  where 

deformations dBdN MM ≡≡≡≡∂∂∂∂====κκκκ . . 

It should be clear that the stiffness matrix is symmetric and is in the form to yield the strain energy 

of a deformed element U = 0.5 ..dkd T
 

     

The mathematical derivation of the stiffness matrix can however take another route which does not 

depend on concepts of strain energy, but deals directly with quantifying the internal forces and 

moments due to a deformation, and then quantifying the actual distributed loads which equilibrate 

with them. These loads can then be represented by integral quantities which we refer to as nodal 

forces/moments. The full mathematical story will not be told here, but at least we should 

understand how to derive the distributed loads using the assumed deformations, the constitutive 

relations and the equilibrium equations. 

 

So now for the deformations: 
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Note that first derivatives of shape functions for this element are simple linear functions: 

 

e.g. 
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Figure 26: gradients of a shape function  

 

For this simple element, the gradients (rates of change) of the deflection components are easily 

found, e.g. consider the gradient component: 
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and this expression is independent of x. So the gradient along different y = constant lines is given for 

example by: 
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The deformations, and the consequent forces/moments can thus be easily derived from knowledge 

of the nodal deflections. 

 

Check moments output by Oasys at the corners and centre of a typical element 

This check requires evaluation of the curvatures and twists at the 5 points using the rotations at the 

nodes as data. Then for example: 

 

along side 12, 
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along side 14, 
( ) ( )
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  and  
2
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ψψ
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−
=

−
= . 

 

From these values we can select or combine to obtain curvatures and twists at each corner, and the 

values at the centre are simply the average values. 

Use Hooke’s law to derive the moments at each point, and from the theory of the element the 

moments should conform with linear variations over the element.  

 

Check shear forces output by Oasys at the corners and centre of the element. 

 

Check two ways to derive shear: 

(i) from the equilibrium conditions 

 

x

xyx Q
y

M

x

M
=

∂

∂
+

∂

∂
  and  y

xyy
Q

x

M

y

M
=

∂

∂
+

∂

∂
.                                                        (20) 

 

This only involves deriving the gradients of the linear moment field, again by taking differences 

between moments at two nodes and dividing by the distance between them. Thus the derivatives 

are constant over the element.  

(ii) from the shear strains and Hooke’s law, e.g. at the centre of the element where 
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Figure 27: 4 noded element with centre and mid-side reference points. 

 

and 00 ..
6

5
zxx tGQ γ= ,  similarly for Qy0. 

 

Lack of equilibrium 

Whilst the stiffness equations for a system of elements essentially enforce equilibrium, it must be 

realized that the quantities being equilibrated are the nodal forces/moments. No direct attempt is 

made to enforce complete equilibrium of the internal forces and moments within elements! If we 

could do that, then we would have found the unique correct solution to the problem. Finite element 

solutions are only approximations, and unfortunately the least accurate quantities are usually the 

derived forces/moments!! 

To appreciate that equilibrium is not satisfied in a local sense it is necessary to evaluate quantities 

like: 
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from curvatures and shear strains respectively, and compare with zero; 
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or 









+

∂

∂
+

∂

∂
q

y

Q

x

Q yx  where shears are derived from shear strains, and compare with zero. 

 

Alternatively we could evaluate the loads for which equilibrium is exactly satisfied and hence for 

which the displacements and compatible deformations output by Oasys are the exact response. Such 

loads require in general a pressure q~ and two components of load in the form of couples per unit 

area about the x and y axes.  

 

 

 

 

 

 

 

 

Figure 28: infinitesimal element including derived equilibrating loads 
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Such loads can be compared with the applied loads. In practice we can then decide whether the lack 

of equilibrium is acceptable for the job in hand (How accurate do we need to be? How well are the 

loads defined?), or needs to be improved. In the later case the size of elements should be considered 

and reduced, or a different type of element used……… 

 

 

 

 

x 

y 

dy 

dx 

Qy 

Qx 

My 

Mx 
Mxy 

Mxy 

q~

xc~

yc~  



Copyright © Ramsay Maunder Associates Limited 2004-2012 

 

33 

Weak equilibrium 

The weak form of equilibrium enforced by the finite element model involves balancing equivalent 

nodal forces and moments in vector f. 

 

 

 

 

 

 

 

 

Figure 29: an element with derived surface loads and boundary tractions 

 

Nodal forces that are statically equivalent to the derived loads are defined in Equation (24). 
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Concepts and applications of finite element analysis, R D Cook, D S Malkus, M E Plesha, R J Witt. 4
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ed Wiley 2002, 

Section 15.3 for Reissner-Mindlin plate elements; Section 15.5 for boundary conditions. 
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Advanced Structural Engineering 

Assignment: Linear elastic behaviour of plates 

 

Use of finite element models 

 

For this Assignment use Oasys GSA to model the plate. This model is based on linear elastic 

behaviour with further properties tabulated in Table 1. 

 

plate thickness Young’s modulus Poisson’s ratio 

Floor slab 0.250m 25e6 kN/m
2
 0.2 

Road deck 1.0m 30e6 kN/m
2
 0.2 

Granite slab 0.150m 35e6 kN/m
2
 0.2 

Water tank 0.3 30e6 kN/m
2
 0.2 

Retaining wall 0.4 30e6 kN/m
2
 0.2 

 

Table 1: plate properties – real constants and material properties 

 

• Modelling with GSA 

 

• Create a uniform mesh of rectangular elements having side dimensions ≤ 1/10
th

 of the 

lengths of the sides of the plate, i.e. split the initial quadrilateral into at least 10 divisions 

each way – to fit individual problems. 

 

• Use explicit definitions of material properties. 

 

• Use soft conditions first to simulate simple supports.  

 

• Results and reports 

 

• Plot contour maps of deflections and/or vector plots at nodes, and indicate maximum values 

of deflections; 
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• Plot the distributions of reactions, and indicate maximum values; 

 

• Plot contours of bending moments, torsional moments, and shear forces and indicate 

maximum values; 

  

N.B. These plots describe the linear elastic behaviour of your plate, but they will also form useful 

references for the limit analyses in Assignment 4. 

 

• Check the GSA results for ONE element (e.g. the one with the largest moments and indicate 

its location in the plate) as follows: 

 

• From the output of nodal rotations, derive by hand the curvatures and twists at the 

nodes and the centre of the element. Be aware of the differences between ψx and 

ψy and θx (Rxx) and θy (Ryy) as illustrated in Figure 15.1-4 in Cook. 

• Then using the DM matrix,  derive the components of moment at these points and 

compare with the output from Oasys; 

• Then derive the derivatives of moments as constant values throughout the element 

to obtain: 





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y

M

x

M xyx  and 
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


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



∂

∂
+

∂

∂

x

M

y

M xyy
 as estimates of the shear forces;  

• From the output of nodal deflections, derive by hand the gradient of deflection w at the 

nodes and centre of the element and the rotations. Hence derive the transverse shear 

strains at the nodes and centre and the corresponding shear forces.  

• Compare the shear forces at the centre of the element as derived above and as output 

from Oasys. 

 

• As a check on local equilibrium evaluate the load intensities in the form of a pressure and two 

components of couples at the centre of the element, corresponding to the shape of the 

deformed element compatible with the nodal displacements as output from Oasys. Compare 

with the applied load. Reflect and comment on the significance of theses values. 

 

• Do not be surprised if local equilibrium appears to be violated. Violations indicate that the finite 

element model is not completely accurate for the purposes of simulating linear elastic 

behaviour, it is only an approximation. 

 

• Re-compute with Oasys GSA using hard simple supports, and reflect and comment on any 

significant differences between using soft or hard supports. These comments should be based 

on inspection of graphical output, there is no need to re-check the single element!  
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• floor slab with an opening, simply supported on 4 edges 

 

 

 

 

 

 

 

(1) 5kN/m
2
 UDL with a central square opening         (2)  as (1) but with an off-centre opening 

• road bridge deck simply supported on two opposite edges, free on the other two edges 

 

 

 

 

 

 

 

(3) 10kN/m
2
 centre lane load                             (4) as (3) but with lane load next to a free edge 

• road bridge deck simply supported on two opposite edges, free on the other two edges 

 

 

 

 

 

 

 

(5) 40kN UDL on a 1m×1m central patch       (6) as (5) but with position moved to a free edge 

2m 
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6m 

10m 

12m 
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12
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2
2m 
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• 10m × 5m floor slab simply supported on 3 edges 

 

 

 

 

(7) 5kN/m edge load                                                               (8) 4kN/m
2
 UDL                              

 

• granite landing slab simply supported on two adjacent edges, free on the other two 

edges 

 

 

 

 

 

 

 

(9) 12kN/m line load applied on part of a free edge          (10) 5kN/m
2
 UDL over the entire slab 

 

10m × 5m floor slab simply supported on 2 edges        

                                                                                               

 

 

 

 

 

 

 

  

1.5m 1.5m 

2m 

3m 

(11) 5kN/m central load 
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Guidance document for using Oasys GSA version 8.3 in modelling rectangular plates. 
 
 

o Create a finite element model 

 

• Select Structure Type: Space, and check default units or select different ones. 
 

• Note re axes and definition of 4 corner nodes and element topology as for the plane stress 

demonstration.  
 

• Define the material properties explicitly under Properties: Materials: User Defined 

• Input values of Young’s Modulus and Poisson’s Ratio; use only the one material which 

will be referenced as material number 1 and by name, e.g. “stone”. 
 

• Define 2D Element Properties 

• Input 2D element property number 1, Type as Flat Plate; Material by name; and 

Thickness. 
 

• Split element as demonstrated for the plane stress model. 
 

• Delete elements as necessary to create an opening in the plate. 

• Select elements for deletion, then select Edit and Delete. Check by viewing a “shrink” 

view.  

• Define supports (e.g. simple or fixed) 

• Activate the “Select nodes” icon in the left hand menu, then select nodes on the 

boundary (e.g. surround with a box and use Ctrl key for multiple boxes). 

• Select Edit from the top menu, and then Save Selection As List…, give a name to the list 

for future reference. 

• Under Constraints select the Generalised Restraints option to specify common restraints 

to each node in a list – remember the distinction between soft (w = 0) and hard supports 

(w = 0 AND θx = 0 when the supported edge is parallel to the y axis). For each named list 

choose “Yes” to apply zero values of vertical deflection or rotation under the headings 

x,y,z and/or xx,yy,zz respectively. You must realize here that, for example, “xx” denotes 

rotation about the x axis as illustrated in Figure 15.1-1. in Cook using the symbol θx. 
 

• Define loads 

• Select elements in order to specify a common value of a UDL. Selection may be done by 

enclosing elements within a box and using the Edit, Save Selection As List… feature.  

• Under Loading, 2D Element Loading, select Face Loads: 

• Input lists of elements, and Pressure at Position. Just one value is required for a 

UDL, or different values at the nodes when appropriate. Remember that a 

negative value is required to specify a pressure in the downwards direction 

when the z axis is positive upwards! 

• Line loads on a boundary must be specified under Loading, Nodal Loading, Node Loads. 

• Input lists of nodes, and Value of a vertical force. This value should represent a 

uniform intensity of line load in a statically equivalent way, e.g. in the same way 

that you would represent a distributed load on a beam element. In this case, 

note that the values of vertical forces for the end nodes of a line should be half 

that for the nodes in between the ends.  
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• Analyse the model 

• Use the Σ icon on the top menu.  

 

• Examine the output 

• Deflected shape, use the             button – try 3D views by rotating the viewing direction, 

and animation. 

• Display nodal reaction forces/moments by activating the Diagram settings button in 

right hand menu, then select Reactions from the dialogue box and select a component 

of force or moment. Note that reactions can also be displayed by selecting the 

“reaction” button in the menu on the right hand side of the screen. 

 

• For numerical values select Output from the left hand menu, then: 

  

• Nodal Results, Displacements for a table of components.  Save those of interest by 

selecting with the mouse and Copy under the Edit menu. It appears that you cannot 

restrict the saved results to particular components but only to particular lines of output. 

Note that the relevant components will be Uz, Rxx, and Ryy. The copied output may then 

be pasted into a word or Excel document. In this context it may be better to opt for the 

Grid style Output View. 

 

• Nodal Results, Reactions for a table of components. List and note reactions – save in a 

file for later editing. Note that the relevant components will be Fz, Mxx, and Myy; be 

careful with the notation and sign conventions, e.g. Mxx denotes a moment at a node 

which corresponds to a rotation Rxx (or θx). 

 

• Display contour maps of components of interest, e.g. vertical deflections and 

“projected” moments and shear forces: 

• Activate Contour settings icon in right hand menu, then select from the dialogue 

box: 2D Element Displacements (select a component), 2D Element Projected 

Moments (for 2D Moment, Mx, My, or Mxy) or Forces (for 2D Through-Thk 

Shear, Qx or Qy). 

• Graphic views can be saved in different formats such as PNG or JPEG by 

selecting Graphics and then SaveImage, or use “Copy” and “Past Special” 

buttons, and choose Bitmap. 

 

• List components of interest, e.g. moments and shears in each selected element at node 

positions and at the centre point – save in a file for later editing: 

• Select 2D Element Results, 2D Element Projected Moments or Forces. Note that  

contour maps of shear forces are displayed as if they were constant for each 

element, and the Force components listed include in-plane components Nx etc 

which should all be zero! Check that results are displayed using Global Axes. For 

notation and sign conventions refer to Figure 15.1-3 in Cook, but note that 

output for shear forces appears to use the opposite sign convention – which just 

goes to show how careful you must be when interpreting computer output!! 



Copyright © Ramsay Maunder Associates Limited 2004-2012 

 

40 

 

• Output can also be printed directly using File and Print commands. 

 

• Reanalysis after modifications to the model or the loads 

1. Modifications can only be made after selecting Delete All Results under the Analysis item 

of the top menu. 
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Limit analysis: bounds on ultimate loads for plates. 

 

Introduction 

Whilst linear elastic analyses are widely used in practice (a rough estimate has been made 

that some 90% of structural analyses are based on linear elastic assumptions), it is vital to 

understand how structures may collapse, and at what loads (the ultimate loads). One way to 

address this problem is to carry out a sequence of analyses that recognise from stage to stage 

that material becomes inelastic and/or the deflections become large – this is normally referred 

to as an incremental non-linear analysis. It needs to make many assumptions along the way, 

and can become very expensive in terms of computational effort. An alternative approach, 

termed limit analysis, exists based on theorems of plasticity when the material exhibits 

sufficiently ductile behaviour [1]. Limit analyses aim to predict collapse loads directly 

without the need for incremental analyses. The first type of limit analysis we consider leads 

to lower bound estimates of collapse loads, and hence it is on the safe side. The second type 

of analysis leads to upper bound estimates of collapse load, and hence it is on the unsafe side! 

 

Yield in the context of reinforced concrete slabs - Nielsen’s yield criterion [2]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 1: yield in orthogonal reinforcement 

 

The yield criterion is derived from the assumption due to Johansen that the bending moment 

that can be mobilised to resist Mn is provided by the tension at yield in the reinforcing bars 

that cross the section. Resolving the tensile forces in the reinforcement parallel to the normal 

direction n gives a yield moment intensity MYn defined by: 

 

αα 22 sincos YyYxYn MMM += , and   ααα 2sinsincos 22
xyyxn MMMM ++= . 

 

We then require that the bending moment Mn  ≤  MYn for all values of α.  

 

It can be shown that this is achieved with top/bottom layers of reinforcement when the 

principal moments corresponding to: 
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. (1) 

 

Note that the minus sign is associated with yield moments provided by the top layers of 

reinforcement and the plus sign is associated with the yield moments provided by the bottom 

layers of reinforcement – using the standard sign convention for moments as in elastic theory. 

In general yield occurs with orthogonal reinforcement when the three components of moment 

Mx, My, and Mxy  lie on the yield surface in 3D space. The surface corresponding to Equation 

(1) is formed from two cones (hence the term “biconic”) as shown in Figure 2. 

Note also that in the absence of torsional moments, the requirements for yield moments are 

simplified to  YyyYxx MMMM ±≤±≤   and   

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 2: yield surface, superscripts T and B refer to yield moments due to top or bottom layers of 

reinforcement. 

 

Limit analysis for lower bounds 

 

The master safe theorem 

Equilibrium analysis and the “master safe” theorem: “if any equilibrium state can be 

found, that is, one for which a set of internal forces is in equilibrium with the external 

loads, and, further, for which every internal portion of the structure satisfies a strength 

criterion, then the structure is safe” [1,3]. This wording is a way of expressing the lower 

bound theorem in the theory of plasticity, and assumes that collapse by buckling or the 

development of large deflections is unlikely. It can be used in the context of design or 

assessment, e.g. a new structure can be safely designed to resist any internal forces which 

equilibrate with the external loads, and an existing structure can be assessed for its safety to 

carry (new) loads by seeking a state of equilibrium of the internal forces which nowhere 

violates local strength criteria. This all sounds straightforward, but the determination of 

equilibrium solutions for a plate where there are an unlimited number of such solutions has 

not yet been automated, as far as we know, within commercially available software – it 

requires thought, imagination, and experience! However the rewards are considerable, and 

may enable you to sleep at night!! NB: Ramsay Maunder Associates are currently developing 

software tools (part of EFE) for limit analyses of plates [4]. 

 

 

An example of a rectangular plate with continuous fields of moments [2]. 
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We can illustrate the application of the master safe theorem to a rectangular slab supporting a 

line load on one edge when two adjacent edges are simply supported as shown in Figure 3. 

We need to devise suitable expressions for moment fields, i.e. the components Mx, My, and 

Mxy as functions of coordinates x and y. In general this may pose quite a challenging problem, 

and we will demonstrate later that the application of equilibrium elements as in EFE opens a 

systematic way of approaching it. However for the moment we will propose some fields and 

see what we can achieve with them. 

 

 

 

 

 

 

 

 

 

 
Figure 3: simply supported plate and a moment field. 
 
 

We can verify that equilibrium is satisfied as follows: clearly bending moments are zero 

along all four edges, and 
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Thus the loads are correctly accounted for, and the reactions are as shown in Figure 4: 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 4: distributions of reactions, including the Kirchhoff equivalent form. 
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This solution leads the load to the lower edge support, and requires torsional moment 

reactions. We can adapt this solution to comply with “soft” supports, i.e. without torsional 

reactions, by invoking the concept of equivalent Kirchhoff shear forces. From the physical 

point of view we argue that narrow edge strips have unlimited shear strength, and hence have 

the capacity to transfer the Kirchhoff reactions to the stress-resultants defined by the moment 

field [5]. 

In Figure 5 the edge strips are shown in an exploded view in order to show clearly the forces 

and moments applied to the external and internal faces of each strip. Each strip is in 

equilibrium, and although there are shear forces within the strips, there are no bending 

moments! The external reactions now include a concentrated corner force. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 5: exploded view of the simply supported plate without torsional reactions. 

 
 
However, even if we only restrict ourselves to simple quadratic moment fields, the field 

equilibrating with the load is not unique.  In the present example, by exploiting Kirchhoff 

equivalent forces, we can define two fields in Equations (2) and (3) that equilibrate with zero 

applied loading, e.g.: 
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and the edge reactions are shown in Figure 6. 
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Figure 6: edge reactions for a hyperstatic moment field. 

 

 

After transforming to the Kirchhoff reactions, the reactions are essentially contained along 

the lower supported edge, and hence they become self-balanced and independent of any 

external load. This moment field is statically indeterminate, otherwise termed hyperstatic. 

Once more an exploded view, in Figure 7, clarifies the structural function of each edge strip: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 7: exploded view of hyperstatic reactions. 
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A second hyperstatic moment field is similarly defined in Equation (3): 
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and this field has reactions as shown in Figure 8. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 8: hyperstatic reaction corresponding to moments in Equation (3). 

 

Now we have 1 particular moment field and 2 hyperstatic, or complementary, ones. If we are 

assessing the capacity of a slab with a given yield strength, then we have the freedom to 

combine the 3 fields with the aim of maximising the load factor that can be applied to the unit 

edge load. On the other hand, if we are designing a new slab to support a specified load, then 

we can aim to minimse the yield strength required. These are basic problems of optimisation. 

 

Hillerborg’s strip method 

The previous example is meant to indicate how a systematic method may be developed as a 

computational tool. However, equilibrium solutions can often be generated manually by 

exploiting further the concept of modelling a slab as interconnected families of beam strips 

which act in a similar way to floor planks as illustrated in Figure 9.: 

 

 

 

 

 

 

 

 

 
Figure 9: beam strips as floor planks. 
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In the context of reinforced concrete slabs, Hillerborg’s strip method [6,7] considers the way 

a slab transfers load as a 2D extension of beam concepts. At its simplest a slab can be thought 

of as two orthogonal families of contiguous strips (rather like floor planks placed edge 

to edge, but in two layers or directions), whose directions coincide with the directions of 

the reinforcing bars. The beam strips transfer load directly placed on them to supports, or 

orthogonal strips interact with each other to provide mutual support. Loads or interactions are 

equilibrated in each strip by distributions of shear forces and bending moments – these 

quantities and the reactions at supports need to be evaluated in order to specify an 

equilibrium solution. With more complicated cases it may be necessary for equilibrium to 

include torsional moments within beam strips as well as bending moments. It is generally 

simpler to avoid these if possible. 
 
Some guidelines are given here to supplement the example in CALcrete [8] and the rather 

brief notes in Mosley et al [9], MacGregor [10] and Nilson et al [11], and should be 

considered in relation to the individual problems included in Assignment 4. All these 

problems are based on rectangular slabs with edges which are either free (unsupported), or 

simply supported (able to resist vertical shear forces and torsional moments if required). 
 
• Define two orthogonal families of beam strips – normally these would be aligned parallel 

to the lines of support and/or the directions of the reinforcement. The beam strips can be 

infinitesimal in width, or of finite width, but must recognise the occurrence of openings 

(beam strips should “frame” round openings) and concentrated loads spread over a small 

area (strip widths should be such as to coincide with the dimensions of the loaded area). It 

should be noted that the division of a slab into strips is similar to the subdivision 

(discretisation) involved in the finite element models (rectangular elements can be 

identified by the overlap of two orthogonal strips) for Assignment 3. 
 

• Identify lines of support (concentrated supports are also used in practice in the form of 

columns with flat slabs – such cases are not considered in this module). 
 

• Define load routes for the pattern of loading being considered – three alternative ways to 

divide the load are described by MacGregor [10] for a rectangular slab with each edge 

simply supported and loaded with a UDL (uniformly distributed load). For this particular 

problem there is no need for the strips to interact, you decide how to divide the load 

between them. Basically the ways described by Macgregor either share the load in the 

same proportion at each point (e.g. as illustrated in later examples), or subdivide the area 

of the slab (favoured by Hillerborg [6,7] and impose all the load in an area onto one or 

other of the families of strips as designated by arrows, for example in Figure 10. 

 

 

 

 

 

 

 

 

 

 
Figure 10: load routes designated by location. 
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A summary of the procedure for exploiting beam strips:  

• identify supports 
 

• identify families of beam strips 

o 2 families generally: for reinforced concrete slabs, their alignment usually agrees with 

the alignment of the reinforcing bars. 
 

• load sharing and/or interactions between strips 
 

• for simplicity, keep torsional moments zero if possible 
 

• infinitesimal or finite width of strips? 
 

• lateral thinking and imagination 
 

• explain your structural system, follow the load paths so as to define distributions of reactions, 

and form moment and shear force diagrams for a typical strip from each family. 

 

• EXAMPLES 
 

• 4 simply supported sides with a UDL 

 

 

 

 

 

Figure 10: rectangular plate with simple supports and a UDL 

 

 

Share load q between 2 families of beam strips parallel to the sides (and the x and y axes). 

How might we proportion the loads? 

 

For an isotropic design we can equate the maximum midspan bending moments: 
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Or we could aim to make deflections equal at the centre, and this would imply that: 
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Figure 11: beam strip solutions for figure 10. 

 
� 2 simply supported sides with a line load in a perpendicular direction , e.g. a wall  

 
 
 

 

 

 

 

 

 

 

 
Figure 12: line load perpendicular to two lines of support. 

 

 

 

 
 
In this case the two families of beam strips interact when we consider y-strips support the x-

strips. We decide on a width of support 2a and require W.dy = qx(2a).dy and qy = -qx for 

equilibrium. The line load from the wall is then dispersed laterally over an “effective” width 

2a by the x-strips and then transferred by the y-strips to the 2 lines of support perpendicular to 

the wall. 
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Figure 13: beam strips for Figure 12. 

 
 
• 2 adjacent simply supported sides, line load along an unsupported side 

 

 

 

 

 

Figure 14: slab simply supported on 2 adjacent sides. 

 

Like the previous example we might expect interaction between strips to disperse the line 

load to remote supports. However because individual strips are only supported at one end, 

rotational equilibrium becomes problematic! A way to overcome this problem is to imagine 

that the strips not only interact via pressures qx = -qy, but also via distributions of couples 

which restore moment equilibrium via torsional couples as indicated in Figure 15. 

 

 

 

 

  

 

 

 

 
Figure 15: Interactive couples (imagine as transferred between planks by nails or screws) 

 

An interactive couple such as cy.dx.dy can be imagined to be activated by a couple of nails 

connecting two perpendicular planks as beam strips. The couple then acts as a bending load 

on the y-strip and a torsional load on the x-strip, and these types of load must be transferred to 

the two lines of support. Whilst the concept of interacting floor planks is a useful way to 
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describe load transfer (or load paths), it still treats the planks in one particular family as 

independent parts of a structural system. Figure 16 illustrates this case. 

NB The definition of the interactive forces and couples in the above example are by no means 

unique – as usual the structural system is highly statically indeterminate! 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 16: Beam strips with an example of interactive loads in the form of pressures and couples. 

 

 

• dispersal of a concentrated load on a small area to a larger area 

 

This example illustrates strip interactions when concentrated loads need to be dispersed over 

a larger area as indicated in Figures 17 and 18. 

 

 

 

 

 

 

 

 

 
Figure 17: a concentrated load to be dispersed. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 18: 100kN uniformly distributed over 300mm by 300mm area 
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The first stage could be to share the load equally onto the two central strips A-A and B-B that 

are supported by uniform upward pressures of 11.111
3.05.1

50
=

×
kN/m

2
: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 19: load shared between two orthogonal strips. 

 

The downward pressure of 111.11kN/m
2
 is imposed on transverse strips that extend over a 

1.5m length. Thus each transverse strip is loaded over its central 300mm × 300mm area by a 

force of 10kN. This force is, in turn, supported by a uniform upward pressure of 

22.22
3.05.1
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=

×
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2
. The downward pressure from each family of strips leads to a total 

downward pressure of 2 × 22.22 = 44.44kN/m
2
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5.15.1

100
=

×
kN/m

2
 onto the larger 

area. 

 

  

B 

B 

50kN 

50kN 

A A + 



Copyright © Ramsay Maunder Associates Limited 2004-2012 

 

53 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 20: 100kN uniformly distributed over 1500mm by 1500mm area 

 
We can now calculate shear force and bending moment diagrams for typical strips. The loads 

and internal forces in strip A-A are illustrated in Figure 21. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 21: loads and internal shear force and bending moment diagrams. 

 

40kN/m 

1.5m 

0.3m 

10kN per strip A A 

B 

B 

9kNm 

24kN 

10kN per strip 

60kN i.e. (50 + 10)kN 

shear force diagram 

net load diagram 

bending moment diagram 

+ 



Copyright © Ramsay Maunder Associates Limited 2004-2012 

 

54 

Note that parallel adjacent strips have similar shear force and bending moment diagrams, but 

they support a smaller load, i.e. only 10kN. Further dispersion could be defined by continuing 

with similar stages, and superimposing the total internal actions.              

 

Limit analysis for upper bounds 

 

The dual aspect to limit analysis involves predicting/imagining the possible modes of 

collapse, e.g. as shown in Figures 22 and 23, and then ensuring that collapse doesn’t occur 

before the load has reached a value above that normally expected – the ratio of the collapse 

load to the normal load is termed the load factor. 

 

In the case of plates we will restrict ourselves to those modes of collapse that involve the 

formation of zones of local yielding due to flexural actions as indicated in Figure 23. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 22: Collapse of Pipers Row car park – mainly a shear mode of collapse. [12] 

 

 
 
(a) Crack patterns on soffit of a simply supported square slab, (b) simplified pattern of yield lines [13] 

 
Figure 23: example of a flexural mode of collapse. 
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This mode of collapse tends to develop by the gradual formation of “plastic hinges” that 

extend to form “yield lines”, and when these lines connect to complete a mechanism, the slab 

collapses. The art is then to predict the most likely pattern of yield lines for a given slab with 

its supports and a given pattern of loading. If we happen to choose a different pattern of yield 

lines i.e. another mode of collapse, then the determination of the corresponding collapse load, 

and its load factor, will be theoretically too high, i.e. we obtain an upper bound to the 

collapse load (or we may say that we obtain an unsafe result).  We need to determine the least 

upper bound if possible. 

The nature of this bound follows from the upper bound theorem of plasticity, and although it 

is theoretically unsafe, experience has given engineers the confidence to exploit the yield line 

method [14], and it is always useful to know if upper bounds can be found close to lower 

bounds. 

 

Yielding of the reinforcement to form hinge lines tends to concentrate deformations into 

zones along the yield lines, and deformations outside these zones are relatively insignificant. 

So we generally idealise the pattern of yield lines so as to partition a slab into rigid regions 

(or elements) between yield lines, and we neglect shear modes of collapse. For each region 

we should identify an axis of rotation – this will usually coincide with a line of support. 

Consequently the compatibility of transverse deflections along interfaces between regions 

implies that: 

 

• yield lines remain straight between intersections with other yield lines, 

 

• the alignment of a yield line along an intersection between two regions must be such as to 

be coincident with the point of intersection of the axes of rotation of the adjacent regions. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(i) (ii) 

 
Figure 24: Some illustrative examples to illustrate yield lines and axes of rotation. 

 

(ii)  includes a so-called corner lever where a triangular corner region is held down with no 

deflection or rotation. 
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Figure 25: rotations or regions and rotations in yield lines. 

 

To ensure compatibility of vertical deflections along yield line AB,  

 
B

B
BA

A
A

hwhhwh 22112211   and  ×==××==× θθθθ ,                                         (6) 

 

and this is only achieved when continuation of the line B to A passes through the point of 

intersection of the axes of rotation of regions 1 and 2. Thus via the commonality of 

deflections w at each “node”, i.e. where 3 or more yield lines intersect, we obtain relations 

between the rotations of the regions about their axes of rotation. In fact each mechanism must 

have a unique relation between the nodal deflections, and so all the rotations of the regions 

can be expressed in terms of just one controlling parameter – which we may choose as one 

particular nodal deflection. NB, deflections of a mechanism are only known relative to each 

other – there are no absolute values. 

 

So much for rotations of the regions, now we need to understand how to obtain the angle of 

rotation φ (or “fold” angle) as observed along a yield line. Small angles of rotation can be 

treated as vectors and resolved in different directions, so 

 

( )2211 coscos αθαθϕ ×+×=                                                                          (7) 

 

Now we enforce a weak type of equilibrium by equating the internal work done within yield 

lines to the external work done by the loads applied to the regions, or more succinctly: 

 

Internal work ( )∑ ×× ϕLM Y  = external work ( )∑ × wP                                              (8) 

 

where the summation for internal work is taken over all yield lines and the summation for 

external work is taken over all regions. 

(π – φ) 

B
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B
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NB, in the case of homogeneous isotropic slabs (equal yield moments across yield lines in 

any direction at all points of the slab) we can simplify the evaluation of internal work as 

follows: 

 

( ) ( ) ( ) 22112211 coscoscoscos θαθααθαθϕ ××+××=+×=×× LMLMLMLM YYYY    (9) 

 

So then we could sum the work done by projected lengths of yield lines onto associated axes 

of rotation of the adjacent regions when they rotate. 

 

The external work is evaluated for each region j. A load that is distributed in some way, e.g. 

uniformly, has a resultant force Pj with a corresponding line of action. Since each region is 

assumed rigid, it suffices to calculate the vertical deflection wj = dj × θj of the point on the 

line of action of Pj, where dj is the perpendicular distance from the point to the axis of 

rotation.  Then the work done by the load on region j is simply expressed as Pj× wj. 

 

Since rotations φ and deflections w are functions of θj which in turn can be expressed in terms 

of single controlling parameter δ, the work equation leads us to a relation between the yield 

strength of the slab and the loads corresponding to a particular mode of collapse. NB, this 

relation provides us with results that are theoretically unsafe.  It can be used in one of two 

ways: (i) given the load determine the flexural strength required to support it, or (ii) given the 

flexural strength determine the load that it can support. (i) is the design situation for a new 

structure, but the result is unsafe and hence gives a lower bound for the strength needed, and 

(ii) is the assessment situation of an existing structure, but the result is unsafe and hence gives 

an upper bound to the load capacity. 

 

The use of the work equation will be demonstrated in a simple example. Consider a 5m by 

10m slab as illustrated in Figure 26, simply supported on side AD, and supported with 

moment continuity on sides AB, BC, and CD. It supports a UDL q kN/m
2
, and is reinforced 

so as to have a yield moment MY kNm/m that is the same in all directions and at all positions, 

i.e. the slab is isotropic and homogeneous. 

 

First we find relations between q and MY for 3 possible yield line patterns, each of which 

involves hogging along the lines of continuous support. 

 

 

 

 

 

 

 

 

(a)                                                   (b)                                                    (c) 
 

Figure 26: some possible yield line patterns 

 

In pattern (a) the 4 sagging yield lines converge at the centre of the slab. 

 

The work done in the sagging yield lines = MY(2.5θ1 + 5θ2)×2 + MY(2.5θ1 + 5θ3)×2 

The work done in the hogging yield lines = MY(2×5 θ1 + 10 θ3) 

Compatibility requires 5θ1 = 2.5θ2 = 2.5θ3 = δ 

y y 

x x 
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The external work done by the UDL on each triangular region = 
34

50

34

105 δδ
qq =×

×
×  

The work equation becomes: δ
δ

YMq 16
3

50 = , i.e. qMMq YY 04167.1or    96.0 == .          

(9) 

 

Pattern (b) contains 2 geometric parameters which can be taken as the coordinates of F(a,b), 

when symmetry about the y-axis is assumed. The work done in the sagging yield lines = 

 

MY(2a(θ2 + θ3)) + 2MY((5 – b)θ1 + (5 – a)θ2) + 2MY(bθ1 + (5 – a)θ3)  

 

The work done by the hogging yield lines = 10MY(θ3 + θ1), and the total internal work done 

 

=  10MY(2θ1 + θ2 + 2θ2). 

 

Compatibility requires (5 – a)θ1 = (5 – b)θ2 = bθ3 = δ, from which we deduce that  

 

the internal work = 
( )

( )( )
δ

bba

babba
MY

−−

−++−

55

251050
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2

. 

The external work = ( ) ( )( ) ( )
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=−+× . 

 

Work balance then leads to: 
( )

( )( )( ) 








−−+

−++−
=

bbaa

babba
Mq Y

5510

251050
6

2

.                                     

(10) 

 

Since we expect to derive an upper bound solution for q, we should minimise the expression 

in square parentheses to find the least upper bound for this pattern. 
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Figure 27: variation of q dependent on coordinates (a, b) for a unit value of MY. 

 

Figure 27 indicates that the value of q is not very sensitive to the value of a in the range 0 ≤ a 

≤ 3m, and the minimum value of q ≈ 0.9059MY occurs when F is at (1.36, 2.93). 

 

Pattern (c) appears to have a minimum value of q occurring when G and H coincide at the 

centre of the plate, and this indicates that the pattern is not the critical one in this case. 

 

Comparison is now made with a lower bound from an equilibrium solution based on simple 

beam strips shown in Figure 28. 

 

 

 

 

 

 

  

 

 

 
Figure 28: beam strips with simple and continuous supports. 

 

The maximum UDL’s on each type of beam strip satisfy ,2
8

102

Y
x M

q
=   

( )223

2
52

−
= Y

y

M
q  

and then q = qx + qy = (0.16 + 0.466)MY = 0.626MY kN/m
2
 < 0.9059MY. The true theoretical 

collapse load lies somewhere inbetween the lower and upper bound values! 

 

Further examples of yield line solutions can be found in references [8 to 11,14,15]. A more 

systematic approach, using patterns based on triangular FE meshes, is exploited in EFE [4], 

and this is illustrated in the Appendix. 
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 Assignment: Limit analysis in the design of reinforced concrete slabs specified in Previous 

Assignment 
 

(a) Equilibrium analysis of slabs  

Use two families of beam strips to estimate the maximum design moments for the specified loads, 

preferably without torsional moments, although you may find it easier to include torsion in cases (9) 

and (10). 

 

• The diagrams for Assignment 3 are not to scale, so a first step in designing families of beam 

strips is to draw a plan to scale, and then consider “load routes” to the supports. 

• Assume simple supports to mean zero vertical deflection with no normal bending moments. 

Twisting moments could be included, but you need to think about the physical nature of the 

supports! 

• Determine by statics a distribution of support reactions, and sketch load, bending moment and 

shear force diagrams for the strips with greatest bending moments in each family. 

 

Complete part (a) for presentation and discussion at a seminar on 2
nd

 December 2008. 

 

(b) Yield line analysis of slabs. 

• Use the proposed yield line patterns in the following Table to calculate the flexural 

strength, or yield bending moment MY kNm/m, required to support the specified load. The 

yield line pattern defines one possible collapse mechanism for the slab, there are an 

infinite number of possibilities! However many mechanisms are considered in practice, 

the one which minimises the collapse load for a given strength (least upper bound) gives 

the best solution. You can assume for simplicity that the slab is homogeneous and 

isotropic.  

 

• Propose an alternative yield line pattern which should be considered for analysis, but do 

not carry out the analysis! 

 

Note that yield line analysis is “unsafe" in that, for a given slab with a given strength, a yield 

line analysis leads to an upper bound of the collapse load; conversely for a given load a 

yield line analysis leads to a lower bound of the flexural strength required to support 

the load! 

 

On the other hand for limit analysis of "plastic" structures, equilibrium analysis, where you 

define stresses or stress-resultants to be in a state of equilibrium with specified loads in a way 

which does not allow moments to exceed yield bending moments, leads to a “safe" prediction 

of the flexural strength, i.e. an upper bound of the flexural strength required. Note that the 

linear elastic finite element analysis provides a pseudo-equilibrium analysis that could lead to 

another “safe” prediction provided you are satisfied with the lack of equilibrium involved! 

 

• You should compare the design flexural strengths you obtain from parts (a) and (b), 

and the strengths required from the linear elastic finite element analysis in 
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Assignment 3. In the latter analysis you can observe the range of principal moments 

by plotting contours of derived moments termed Mmax and Mmin in Oasys GSA. 

 

• floor slab with an opening, simply supported on 4 edges 

 

 

 

 

 

 

 

 (1) 5kN/m
2
 UDL with a central square opening         (2) as (1) but with an off-centre opening 

• road bridge deck simply supported on two opposite edges, free on the other two edges 

 

 

 

 

 

 

 

 

 

(3) 10kN/m
2
 centre lane load                             (4) as (3) but with lane load next to a free edge 

• road bridge deck simply supported on two opposite edges, free on the other two edges 

  

2m 
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6m 
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1. (5) 40kN UDL on a 1m×1m central patch       (6) as (5) but with position moved to a free edge 

 

• 10m × 5m floor slab simply supported on 3 edges 

 

 

 

 

(7) 5kN/m edge load                                                                       (8) 4kN/m
2
 UDL                              

 

• granite landing slab simply supported on two adjacent edges, free on the other two edges 

 

 

 

 

 

 

 

2.  (9) 12kN/m line load applied on part of a free edge        (10) 5kN/m
2
 UDL over the entire slab 

 

• 10m × 5m floor slab simply supported on 2 edges        Table of student  problems 

 

wheel load 
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(11) 5kN/m central load   
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Appendix:   Automated Yield Line Technique – Demonstration of EFE-YL 

Introduction 

A demonstration of an automated or computerised technique for the yield line analysis of ductile 

plates is to be given as implemented in the software EFE-YL.  The example chosen for consideration 

is problem 4 from Assignment 4 for this module and is shown in Figure 1.  The reinforcement is 

isotropic (equal strength in all directions both in sagging and hogging).  Two edges are simply 

supported and a UDL is applied to a strip as shown in the figure. 

 

Figure 1: Geometry, boundary conditions and loading (Problem 4 from Assignment 4) 

The yield line pattern assumed for the assignment, which may not be the correct pattern, is as 

shown in Figure 1 and comprises a symmetric ‘Y’ pattern of sagging (red) yield lines. 

 

Model Construction 

The automated technique used in EFE-YL requires that the model be meshed with triangular 

elements – see underlying mesh in Figure 1.  The edges of the elements form potential yield lines 

and the particular configuration chosen by EFE-YL on solution is that which minimised the collapse 

load – recall that the method is an upper-bound technique. 

 

Geometric Optimisation 

The suggested yield line pattern of Figure 1 has a number of potential geometric degrees of 

freedom.  The bifurcation point can move in the plane, i.e. it can have two degrees of freedom, and 

the bottom point can move along the edge, i.e. it can have a single degree of freedom.  To maintain 

a ‘Y’ pattern with a vertical stem the horizontal degree of freedom of the bottom point should be 

coupled or made a slave of the horizontal position of the bifurcation point.  Figure 2 shows the 

geometric variables used. 
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Figure 2: Geometric variation of ‘Y’ yield line pattern 

 

A geometric optimisation problem has now been defined where the x and y position of the 

bifurcation point are variables (bounded by the blue box).  For each x,y position there will be a 

different collapse load (load factor)but the optimum position for the bifurcation point is that which 

minimises the collapse load. 

EFE-YL can perform this optimisation automatically but it is useful to obtain a feel for the nature of 

the objective function, i.e. the objective function terrain.  This has been done by setting the 

bifurcation point in the centre of the bounding box (as in Figure 2) and independently varying the 

two geometric variables between their respective bounds.  The resulting plot of load factor against 

position is shown in Figure 3.  The values in this figure are normalised so that all results fit onto a 

single plot.  The load factors and collapse mechanisms at various key points are shown in the figure.   

When the x position of the bifurcation point is varied the result is symmetric with a minimum at the 

central value of x.  This is to be expected as the problem (reinforcement, loading and boundary 

conditions are symmetric.  The variation of load factor with the y position of the bifurcation point 

appears to be a composite curve of two parts which join some three-quarters of the way between 

the minimum and maximum values of y.  The two parts of the composite curve correspond to 

different collapse mechanisms with the mechanism for higher y values involving hogging yield lines 

(green) and no longer being a ‘Y’ pattern. 

 

The results shown in Figure 3 were generated by moving the bifurcation point to the desired position 

and then performing an analysis.  The results indicate a minimum value of the collapse load to occur 

for a central value of x and a minimum value of y.  EFE-YL can conduct such optimisation 

automatically and if this is done the procedure converges to the optimum solution just identified. 
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Figure 3: Plot of Load Factor  Λ against geometric variable 

 

Thus far we have assumed a mode of collapse mechanism (the ‘Y’ shaped mode) and, recognising 

that is possesses some geometric variability, we have found the optimum position for the bifurcation 

point.  A question remains as to whether or not the chosen mode of collapse was actually the 

correct one – in other words is there another collapse mechanism lurking in the wings that has a 

lower collapse load? 

 

 

Λ=19.58 Λ=19.58 

Λ=18.89 

Λ=13.89 

Λ=21.40 

Λ=11.35 
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Mesh Refinement as a Method for Locating the Critical Collapse Mode 

In the absence of any knowledge of the critical collapse mechanism, mesh refinement can be a 

useful  although, as will be demonstrated, not foolproof technique.  The idea here is that we mesh 

the model with some initial mesh then observe the way in which the collapse mechanism changes as 

the mesh is progressively refined.  Experience with other numerical techniques, e.g. elastic finite 

element analysis, may condition us to expect a monotonic convergence of load factor with mesh 

refinement.  However, such monotonic convergence is not generally obtained with the yield line 

technique since the element themselves are rigid and it is the position and orientation of the 

yielding edges that describes the collapse mechanism.  Different meshes will have different patterns 

of element edges which may or may not allow the series of meshes to converge. 

A convergence run using mesh refinement is shown in Figure 4.  The first column of the figure shows 

the mesh and resulting yield line pattern.  The second column lists the number of elements specified 

to the mesh generator and the actual number of elements produced whilst the final column lists the 

load factor.   The initial mesh uses the geometry of the previous model for the ‘Y’ shaped collapse 

mode with the bifurcation point located at the centre of the bounds.   

The’ convergence’ observed in Figure 4 is not monotonic with the load factor oscillating with 

increasing numbers of elements.  A number of meshes (20 and 40 specified elements) give the same 

results which has a load factor below that achieved with the other meshes.  The collapse mechanism 

for these is a very simple one comprising a sagging yield line across the centre of the slab.  Two 

highly refined meshes of 300 and 1000 specified elements were considered but as neither admits 

the simple central yield line in the mesh neither produces is able to better the lowest load factor.  A 

‘minimal’ mesh using the minimum number of elements possible to discretise the geometry whilst 

admitting the simple central yield line is shown in the last row of Figure 4 and is able to produce the 

lowest load factor. 

The results of the mesh refinement study indicate that the critical collapse mechanism is that of the 

simple single sagging yield line running across the centre of the slab.  This mechanism produces a 

significantly lower (approximately 50%) load factor than that of the assumed ‘Y’ pattern (5.56 as 

opposed to 11.35) and highlights the necessity for considering a range of possible collapse 

mechanisms when using the yield line technique.  

Is the single sagging yield line running across the centre of the slab the correct (true or exact) 

mechanism?  It seems likely but this question may only be answered by somehow confirming that 

the moment distribution within the rigid regions nowhere violate the yield criterion.  Since the yield 

line technique provides no information regarding the moment distribution within the elements this 

can be neither confirmed nor denied with this technique.  In order to obtain the moment 

distribution within elements resort needs to be made to a lower-bound technique in which the 

moment field for the entire slab is defined.  Such lower bound elements exist and are currently being 

incorporated into EFE with a view to providing bounded solutions to the limit analysis of ductile 

plate structures. 
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Mesh Number of Elements 

specified (actual) 

Load Factor 

 

 

1 (9) 

 

18.89 

 

 

10 (29) 

 

7.04 

 

 

20 (40) 

 

5.56 

 

 

30 (49) 

 

6.09 

 

 

40 (64) 

 

5.56 

 

 

300 

 

5.88 

 

 

1000 

 

5.69 

 

 

1 (8) 

 

5.56 

Figure 4: Convergence of load factor with mesh refinement 
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A Case Study – St John’s Wood 

The yield line technique is recommended by the Concrete Centre [10] as being admissible 

for the design of reinforced concrete slabs and being acceptable through the appropriate 

Euro Codes.   

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5: part floor plan of a typical floor at St John’s Wood. 

Figure 5 shows a part floor plan of a 7-storey block of flats in London. The flat slab has a constant 

thickness of 250mm. The floor has an irregular geometry and an irregular array of support columns 

and column dimensions. The maximum span is about 7.5m. 

Yield analyses were carried out using EFE-YL assuming a uniform slab with isotropic yield moments 

and a uniformly distributed load. Figure 6 summarises results with a unit applied load intensity and a 

moment capacity of 50kN/m obtained for a range of meshes, the specified numbers of elements 

ranged from 100 to 2000. The upper bound nature of the load factors is apparent, and we look for 

the least upper bound. 

The results are then used to derive lower bounds for the moment capacity to support a specified 

load at ULS, i.e. 21.7kN/m
2
. Now we look for the greatest lower bound. 
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Number of 

elements 

specified 

Load factor for 

m = 50kNm/m 

Required moment capacity kNm/m 

for a total design load of 21.7kN/m
2
 

100 27.392  

200 25.437  

300 24.092  

400 23.688 45.80 

500 24.033  

600 23.175 46.82 

700 23.884  

800 23.732  

900 23.052 47.07 

1000 22.651 47.90, which compares to 47.2 from David Johnson [16] 

1200 23.444  

1400 22.868  

1600 23.433  

1800 23.005  

Figure 6: results for a range of meshes with a UDL = 1kN/m
2
 and a notional isotropic yield moment of 

50kNm/m for both sagging and hogging moments. 

Closure 

The yield line technique offers a useful method for estimating the limit load of ductile plates such as 

reinforced concrete slabs.  The method relies heavily on the engineer being able to correctly predict 

the critical collapse mechanism.  For simple cases critical collapse mechanisms are well known and 

documented.  For non-standard cases the engineer needs to be prepared to study a range of 

potential mechanisms in order to home-in on the critical one.  Automated techniques such as EFE-YL 

make this exploration simpler and less prone to error but neither the hand technique nor the 

automated technique protect the engineer from assuming a non-critical collapse mechanism.  As 

seen in the simple example shown in this document the difference between the collapse load for 

critical and non-critical mechanisms can be very significant and with the yield line technique a non-

critical mechanism always gives an unsafe prediction of the collapse load.   

Further research and development work is being conducted by RMA into providing complimentary 

lower bound solutions so that even where the true collapse mechanism is unknown the true collapse 

load may be bounded – hopefully with sufficient tightness to be of practical value. 
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Figure 7: an isometric view of a collapse mechanism of the slab with column positions included 

 

Figure 8: another isometric view of a collapse mechanism 

Figures 7 and 8 show different views of the deflected form of a collapse mechanism together with 

contour lines of vertical deflection. 
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