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Introduction

Structurd  designers generdly need to gppreciate how loads are transmitted through
dructures by following paths of interna forces and/or stresses which are daticaly admissble.
Pahs of principd doresses, or “dress trgectories’, were developed by Maxwel from
photodastic techniques around 1850, and by Culmann in the context of graphicad methods in
1866 [1]. Stress trgectories continued to be used in photodadticity in its heyday [2] before
computationad  techniques became predominant. Postprocessng dages of finite dement
andyses now produce graphica forms of dress fidlds — generdly in the form of contour maps
of stress components, von Mises siress, or vector plots of principal stresses as discrete crosses
a the centres of edements. The aams of the crosses have lengths proportiond to stress
magnitudes, and this can lead to scaling problems when a complete overview of the structure
is required. Recent developments in the design of reinforced concrete structures as continua
focus on internd force paths as “drut and tie® models [3]. In forming such modes guidance
can be given by knowledge of dress trgectories. This paper reports on recent work to
integrate developments in hybrid equilibrium dements with improved methods of visudisng
dressfidds, and transforming such fields to smilar but smplified strut and tie forms.

Discrete crosses

For overdl views of dress fidds conventiond plotting of principal Stress crosses
generdly suffers from scaling problems, i.e. a uniform scae can lead to lines too short to see
to lines too long which overlap in a confusng way. Discrete crosses are very dmple to
compute, and their visudisaion can be improved by fixing the lengths of the ams and
specifying other attributes such as colour and/or width to convey the reative magnitudes of
the dresses. An example is shown in Figure 2, which represents a resdud, i.e. hyperdatic,
planar dress field in a triangular prism. Contragredient components of stress are described by
the 5" degree polynomialsin Equation (1) using the oblique axesin Figure 2.
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For an equilatera triangle the dress fidd is skew-symmetric about the centre line shown in
Figure 2. The grid of points is aranged in a Smilar triangular paitern with a spacing equa to
a 45" of the side length. The lines are colour coded blue for tension and red for compression,
and with line widths proportiond to the sress magnitude. Any lines with dress less than 5%
of the maximum meagnitude have been omitted to smplify the plot. The sdection of grid



gpoacing is a compromise between having enough information to be meaningful but not s
much as to be meaningless This type of plot is useful in guiding the deveopment of
continuous trgectories. Furthermore, a srut and tie model becomes evident with two main
interna “nodal zones’ as shown in Figure 3.

Continuoustrajectories

Gover ning equations

A fundamenta theorem on dress trgectories dtaes [2] that a system of dress
trgectories can be divided into two orthogona families of curves for which the tangents to
one family give the directions of the mgor principa dress, and the tangents to the other
family give the directions of the minor principd sress. The principd dress difference (mgor
- minor) remains podtive everywhere and adong al trgectories except at pointglines/areas
where the stressisthe same in dl directions. Such points are termed isotropic.
The Lamé-Maxwell differentid equations of equilibrium for plane stress can be formed with
reference to curvilinear axes which coincide localy with the dress trgectories. Figure 1
illustrates stresses on a curvilinear infinitesma dement.

s, and s, refer tothemgor
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respectively.

Figure 1. Principa stress components using curvilinear coordinates.

In the absence of body forces, the daticdly admissble dress fidds satisfy equilibrium
equations of the form:
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The locad curvature of a trgectory can thus be determined from estimates of locd siress
gradients and differences between principa dresses The additional  condraint  for
compatibility of eastic srains for ahomogeneous isotropic materid is

N2(s,+s,)=0 €)

In other words, the sum of the principa stresses must be harmonic in order to satisfy
equilibrium and compatibility and hence be a Trefftz stressfidd.



Numerical proceduresand problems

Two aspects of plotting trgectories can lead to numerical problems. Firgly, isotropic
points can be of two types, norrinterlocking (type 1), or interlocking (type 2). Both types of
isotropic points give rise to singularities in the curvatures of the trgectories i.e. a curvature
tends to become infinite in the neighbourhood of an isotropic point, the singularity appears
sronger for type 2 where trgectories do U-turns about the isotropic point. The other
problematic feature is the posshility of spirdling away from a closed orbit onto another one
due to small rounding errors, or spirdling onto a fixed orbit a a dow rate of convergence.
The later problem is affected by the dress fidd in the neighbourhood of the orbit and
rounding errors in the numerical procedures. Both Euler and Runga Kutta methods have been
used in the context of stress visudisation aswell asflow visudisation [4,5].

Examples of continuoustrajectories

The resdud dress in a triangle problem, as illustrated in Figures 2 and 3, is usd
again as an example. Now continuous trajectories are developed using 4" order Runga-Kutta
method with a step length equa to one quarter of the grid spacing. Trajectories are initiated at
a dngle grid point and are formed in al four possble directions. Termination of trgectories
depends on three criteriac (i) a boundary is reached in a direction norma to it; (ii) an isotropic
point is recognised by a smdl difference between principd dresses, (i) an upper limit is
placed on the number of steps taken. Figures 3 to 5 show plots from three different points
marked ¢ , with one trgectory of each plot terminating at the isotropic point (type 2) of zero
dress a the centroid of the triangle. Furthermore spirdling occurs with convergence onto one
or two closed orbits from within or without these orbits. The discontinuous and continuous
plots give complementary information. The drut and tie mode helps to explan the
ggnificance of the fixed orbits the materid within them forms “nodd zones’ with only
norma stresses acting on the boundaries of these zones. In essence each node has three bands
of tenson or compresson acting norma to the node. The interesting property appears to be
that these two orbits are unique within the triangle.
The second example is of a tgpered cantilever supporting a udl dong part of its top edge. This
involves a draightforward load transmission between the top edge and the supported edge in
the form of a compresson band, and tendle sresses concentrated mainly in the top zone of
the cantilever. Colour coded continuous trgectories are plotted in Figures 6 and 7 based on
Euler’ s method, and awell defined smple strut and tie mode is superimposed.

Figure 2: Discrete crosses for residua stresses Figure 3: Strut and tie model with nodal zones



Figure 4: Trgectoriesfrom point . Figure 5: Trgectoriesfrom point .
Figure 6: Compressve trgjectories Figure 7: Tendle trgectories

Closure

The 4™ order Runga-Kutta with appropriate criteria for terminating plots appears to be robust
in that it produced expected results for the 5" degree problem of a hyperstatic stress field.
This problem contains dl the problematic features for plotting continuous trgectories, and
hence is consdered as a good benchmark problem. Further work is required to “clean” the
soirds which can interfere visudly with other trgectories, and to develop dgorithms which
will hdp to transform trgectory plots into smplified but smilar srut and tie modds of
potentid use to the designer of reinforced concrete, or more generd forms of composte
structure.
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