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Performance of CFEs on Problems Governed by the Lamé Equations 
 

Finite elements found in most commercial finite element systems are normally based on the 

conforming finite element (CFE) formulation.  Elements based on this formulation adopt shape 

functions that define how the element can displace and also, if they are isoparametric, the shape of 

the element.  These shape functions are normally low degree polynomials, e.g., linear or quadratic.  

The shape functions interpolate nodal values of displacement which are normally the unknowns in an 

FE problem.  Strains determined by differentiating these displacements are by definition compatible 

and stresses determined from these strains using the appropriate constitutive relations then satisfy 

two of the three conditions necessary for an elastic solution.  The third condition, namely equilibrium, 

is not normally satisfied exactly but, rather, the FE solution attempts to minimise the equilibrium 

defaults present in the solution to provide an approximate solution that is, hopefully, close to the 

exact solution. 

In testing FE software and, indeed, in selecting an appropriate element for a given problem, one may 

select to run a problem for which there is a closed-form solution.  In this manner one can confirm the 

coding of the software and observe the level of mesh refinement required to capture the solution to 

sufficient engineering accuracy.   

 

Figure 1: A Lame Finite Element 
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This technical note examines the performance of the CFE axisymmetric membrane element, shown in 

Figure 1, for closed-form solutions governed by the Lamé equations.  The Lamé equations, shown in 

Eq. (1) for an isotopic material with plane stress constitutive relations, express the quantities of 

engineering interest, radial and hoop stress, �� and �� respectively, and radial displacement, �, in 

terms of the two Lamé coefficients, � and � which are determined from the boundary conditions for 

the problem.  The equations are simplified by excluding body and thermal loading terms which are 

not considered in this technical note.  
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Radial Displacement (1c) 

 

 

The first two equations, Eq. (1a) and Eq. (1b) are statements of equilibrium of internal stresses and 

the third equation, Eq. (1c) is a statement of compatibility between radial strains and radial 

displacements.   

For the thick cylinder shown in Figure 2, two loading cases will be considered conforming to the Lamé 

coefficients �=100kPa, �=0 and �=0, �=100kN.  These have been chosen with a view to evaluating the 

performance of the corresponding displacement element found in commercial FE systems. 

 

 

 

 

Figure 2:  Thick cylinder under internal and external pressures 
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The nodal forces for specified values of the Lamé coefficients are obtained from Eq. (1) as shown in 

Table 1.  

Case �, [kPa] �, [kN] ��, [kN] ��, [kN] ��, [kPa] ��, [kPa] 

1 100 0 -2� +20� -100 100 

2 0 100 +200� -20� 10000 -100 

Table 1: Load cases for thick cylinder example 

The solution to the two load cases in terms of the radial and hoop stresses are shown in Figure 3.  

Case 1 Case 2 

Figure 3: Radial and hoop elastic stresses for thick cylinder example 

 

Commercial FE systems typically offer axisymmetric shell elements in lower-order (two nodes) and 

higher-order (three nodes) forms and often provide an option to switch off the bending part of the 

shell leaving an axisymmetric membrane capability.  

For the first load case considered for the thick cylinder, the CFEs recover the exact solution with a 

single element.  This is not surprising since the stresses are constant through the wall of the cylinder.  

For the second load case, however, the stress recovery is rather poor as illustrated in Figure 4 where 

the percentage error in the stress (radial and hoop stresses being equal both in the theoretical solution 

and the FE solution) at the inner radius has been plotted against number of elements. 

For both lower and higher order elements a significant number of elements are required before the 

asymptotic region of uniform convergence rate is reached.  Both elements underpredict the true stress 

and by significant amounts for coarse meshes and this could lead to a potentially unsafe design were 

the engineer not to detect the poor quality of the result.   
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Figure 4: Convergence of elastic stress for load case 2 

In order to establish elastic limit loads one needs to choose an appropriate failure criterion.  Assuming 

the material used for the cylinder to be ductile then the von Mises criterion is most appropriate and 

this has been used together with an elastic, perfectly-plastic material model to produce the results 

shown in Figure 5.  

 

Figure 5: Convergence of plastic limit load for load case 2 (von Mises yield criterion) 

The conventional conforming elements produce results that, as in the elastic case, converge unsafely 

from above.  The results from a Lame Finite Element (LFE) are also shown which, being of an 

equilibrium finite element (EFE) formulation, converge safely from below the true collapse load.  
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