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Introduction

This seminar was arranged following correspondence between Angus Ramsay and Juan Sagaseta of
the University of Surrey. Juan had seen and solved, correctly, the ‘And Finally ..." question posed in
the August edition of the IStructE’s ‘The Structural Engineer’.

Ramsay Maunder Associates (RMA) was established as a partnership in 2004 and incorporated in
2009. The aim of the company was/is the commercial exploitation of Equilibrium Finite Elements
(EFE) as a useful addition to the practising engineers’ tool kit. The work has been self-funded,
through undertaking commercial contracts as specialists in finite element analysis.

During the years a software tool (EFE) has been developed for, amongst others, the lower bound
limit analysis of reinforced concrete (RC) slabs and steel plates. RMA are working in collaboration
with LimitState (a spinout company from the University of Sheffield) with a view to incorporating
EFE, for RC slabs, into their existing upper bound (yield line) software (SLAB).

Over the last 18 months, a significant effort has been involved in writing articles for an audience of
practising engineers, illustrating the virtues of the EFE method both for RC and for steel:

e The Structural Engineer (IStructE)

e Structure Magazine (US)

e Concrete Magazine (UK)

e Engineering & Technology Reference (Institution of Engineering & Technology)
e Benchmark Magazine (NAFEMS)

e |ABSE, SED on Lower Bound Limit Analysis of Steel Plates (in preparation)

The presenters are, variously, involved as:

e Member of NAFEMS Education & Training Working Group
e Independent Technical Editor for the NAFEMS Benchmark Challenge
e Professional Simulation Engineer (PSE) Assessor for NAFEMS

e Academic Qualifications Panel for the I1StructE
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The publication of such articles and the involvement with such bodies enable RMA to engage an
audience of practising engineers to explain the virtues of EFE.

The work RMA have undertaken, particularly on the limit analysis of steel plates, has provided some
new and interesting insights into how steel plates collapse. In particular, it has been demonstrated
that the current practice of assessing such structural members using the traditional yield line
technique is flawed. The use of EFE has also enabled the establishment of more accurate collapse
loads, which are often significantly greater than published values thereby allowing the practising
engineer an opportunity to squeeze more strength out of his/her structure and thus reduce the use
of structural steel.

Simulation Governance (Verification & Validation)

Simulation governance is the process of achieving a good match between numerical simulation, e.g.,
finite element analysis, and physical reality. It can only occur when the engineer understands the
mathematical model that governs physical reality and when the numerical simulation process
provides results that compare well with the mathematical model. The process that provide the
foundations for the three columns are known as verification and validation as illustrated in Figure 1.

Figure 1: Simulation governance and Verification & Validation

A typical strength of materials solution to a problem in linear elasticity is one having a known
theoretical solution and the mathematical model requires the following three conditions to be
satisfied everywhere, i.e., in a pointwise sense.

Table 1: Conditions for a theoretically exact solution

Statics Constitutive Kinematics
Equilibrium between the Stress/Strain (Hooke’s Law) Compatibility between the
internal stresses, the body strains and the displacements
forces and the static boundary and enforcement of the
conditions kinematic boundary conditions
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Strength of materials solutions provide a useful library of known theoretically exact solutions that
the engineer may draw upon for the design/assessment of many simple components and structures.
However, as soon as the structure falls outside the scope of this library, e.g., more complex
geometry, material properties, boundary or loading conditions, then the engineer is faced with an
unknown theoretical solution. Clearly, a theoretical solution does still exist but it is not known and it
is the engineer’s task, if his/her design is to be a success, to find a good approximation to the
theoretically exact solution.

This is where numerical simulation and, in particular, the finite element method steps up to assist
the engineer. The finite element method is approximate however, with sufficient mesh refinement
the approximate solution should converge to the theoretical solution. Let us examine the nature of
the approximations present in two ‘pure’ finite element formulations.

Table 2: Conditions satisfied weakly or strongly for ‘pure’ finite element formulations

Statics Constitutive Kinematics
Strength of Materials Strong Strong Strong
Conforming (CFE) Weak Strong Strong
Equilibrium (EFE) Strong Strong Weak

To the practising engineer, concerned with ensuring the strength of his/her structure of all the
above conditions it is the satisfaction of equilibrium in a strong sense that is paramount.
Reinforcement, for example, can be placed to withstand the moments from a finite element analysis
BUT if these moments are not in equilibrium with the applied load then there could be an issue
further down the line. Edward L. Wilson, original developer of the SAP finite element software,
expressed this idea quite succinctly in his book Three Dimensional Static and Dynamic Analysis of
Structures:

‘Equilibrium is Essential — Compatibility is Optional’

http://www.edwilson.org/book/02-equi.pdf

This is all very well but as indicated above, CFEs (the element formulation used in most if not all
commercial FE software) only satisfies equilibrium in a weak sense! The redeeming feature though
is that with mesh refinement weak equilibrium is strengthened so that, in the limit, one cannot
distinguish it from strong equilibrium. This does though require the engineer to be aware of this
point and actually to undertake mesh refinement and convergence studies! It should be noted in
the context of equilibrium in the CFE formulation that nodal forces around each element do provide
a set of point forces that hold the element in equilibrium.

There is, though, an alternative formulation, known as the Equilibrium Finite Element Formulation,
which always provides strong equilibrium irrespective of the level of mesh refinement. EFE’s are,
thus, perfect for the structural engineer! This is not a new formulation but developments over the
last thirty or so years have ironed out many of the issues faced by engineers in the early days when
attempting to implement this method. Indeed a book on Equilibrium Finite Element Formulations
will soon be published detailing some of the techniques used in the software EFE — see Figure 2.
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Figure 2: Equilibrium finite element formulations (to be published in March 2017)

The differences between CFE and EFE approximations can be illustrated with the simple tapered
cantilever example shown in Figure 3. A rather coarse mesh of 2x2=4 elements has been used and
the engineer is interested in establishing, from the finite element stress fields, the stress resultants
along the section XX; these can of course be easily calculated by hand by appeal to static equilibrium
conditions.
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p=0, 4 elements
Displacement {(mm) Normal (MN)  Tangential ([MN) Moment (MNm)
Left Right Left Right Left Right
EFE (p=1) -3.58 0 0 40 40 200 200
CFE (four-noded) -2.56 F7 19.7 14.5 80.0 200.2 62.8
CFE (eight-noded) -3.48 0.0 0.0 39.5 38.9 205.2 220.7
‘Exact’ -3.54 0 0 40 40 200 200

Figure 3: Tapered cantilever example

The finite element stresses (for both CFE and EFE models) are generally not continuous across
element boundaries and so the stress resultants have been calculated and presented for both sides
of the section. The first thing to note is that the EFE model recovers the exact stress resultants on
both sides of the section. This is as to be expected because the formulation provides strong
equilibrium. In contrast, the CFE results are not exact and are different on the two sides of the
section. The results for both four and eight noded CFEs have been presented and even with the
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higher order (eight noded) element, there is still a 10% error between the CFE result and the exact

value for the moment resultant on the right of the section!

Assessment of a Steel Plate

If good simulation governance is to be observed then it is important that the correct mathematical
model be adopted for the structural member under consideration, c.f., Figure 1. If an incorrect
mathematical model is adopted then the process of validation will fail.

As an example of the use of an incorrect mathematical model a uniformly loaded rectangular plate
(steel), simply supported on two opposite sides will be considered. Whilst, if the width (b) of the
plate is small in comparison to its span, a beam representation might be appropriate, does this
remain the case as the width increases in relation to the span? Beam and plate representation of
this plate configuration are shown in Figure 4.
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The bending moment M for the beam has the usual units Nm. However, when considering plates it is more usual to use moments per unit

width, m, which then has units Nm/m.

Figure 4: Two representations of a plate problem

Let us consider a wide plate with an aspect ratio of 2 where a=1m, b=2m, t=0.01m and the material
has a yield stress of S,,=275MPa firstly using a beam representation and then a plate representation.

Mathematical Model - Beam

The pressure to cause first yield and plastic collapse (through the development of a central sagging
yield line) can be established once the maximum moment in the beam is determined simply by
equating this moment to the moment required to cause first yield and plastic collapse:

Syt2 Moment to cause first yield of section (1)
me =
N
Syt2 Moment to cause collapse of section (2)
m,=——
4
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The pressures are, respectively, 36.7kPa and 1.5x36.7=55kPa. The Steel Construction Institute offers
practising engineers advice on the design of structural steel members in its Steel Designers’ Manual,
[1]. An extract from the SDM relevant to the plate being considered is shown in Figure 5.

Ultimate load capacity (kN/m?) for floor plates simply supported on two edges stressed to 275 N/mm®

Thickness Span (mm)
on plain
mm 600 800 1000 1200 1400 1800 1800 | 2000
4.5 20,48 |11,62 7.45 517 3.80 2.95 2.28 1.87
6.0 36.77 |20.68 |13.28 9.20 6.73 5.20 4,07 3.30
8.0 65.40 |36.87 16.38 |11.97 9.23 7.23 5.93
10.0 102,03 |57.42 < 2555 [18.70 |14.45 [11.30 9.25
12.5 159.70 |89.85 |57.40 |35.98 |29.27 |2262 |17.68 |14.50

Stiffeners should be used for spans in excess of 1100 mm to avoid excessive deflections.

Figure 5: Extract from the SDM for the plate being considered

The ‘ultimate load capacity’ for the plate is 36.67kPa, as highlighted in Figure 5. The table does not
refer to the width of the plate so it can reasonably be assumed that the mathematical model being
adopted in the SDM is that of beam theory. However, the value shown is identical to the value
already calculated for the pressure to cause first yield and so it is clear that the phrase ‘ultimate load
capacity’ is spurious and misleading; if the practising engineer took the SDM value at face value then
he/she would be underestimating the strength of the plate be some 50%!

Mathematical Model - Plate

The theoretical solution for this particular plate configuration was worked out by Levy over a century
ago and is published in, amongst others, Timoshenko’s text on ‘The Theory of Plates and Shells’, [2],
c.f., Figure 4(a). The moment fields for the beam and plate representations are compared in Figure
6.
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(b) Plate representation (Levy)
Figure 6: Cartesian moment fields (Nm/m for 1kPa pressure) - m,, m,, and m,,,

It is seen from Figure 6 that whereas the moment field for the beam is one-dimensional, that for the
plate is fully two-dimensional. The beam representation has a maximum moment of equal value
across the centre line whereas the plate representation shows maximum moments at the centre of

the free (unsupported) edges and the pressure for first yield has already been calculated as 36.7kPa.
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The two-dimensional moment field for the plate representation (which is driven by Poisson’s ratio —
anticlastic bending) leads to a pressure of 34.5kPa for a Poisson’s ratio of 0.3.

As such, when the member is correctly represented with the mathematical model for a plate, then
the moment to cause first yield is some 6% lower than that achieved with a beam model. Whilst the
plate model does provide, more or less, the same solution as the beam model when the aspect ratio
is small it soon begins to differ with increasing aspect ratio converging to a non-conservative 6% for
aspect ratio greater than about 2 as shown in Figure 7.

132.8kPaf125kPa=1.062

1.07
Maximum moment in plate divided by the / ~1.064

E 1.06 - moment from the beam solution
v
E Pressure, p
S 1.05 .
E o [r—2

| B B o B
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m = ﬁ-g NS x E"”Thicknessj
T 1.02 A
2 N =\
T 101 - L R
E Beam Solution
2 1 *

— v=103
0.99
0.001 0.010 0.100 1.000 10.000
Aspect Ratio

Figure 7: Maximum elastic moment for Levy

Thus, it has been shown that the beam representation is 6% non-conservative. Is that of concern?
Does one consider the SDM (and others) to be doing the practising engineer a disservice given that
the Levy solution has been known for at least 100 years?

It will have been spotted that the beta values at the centre of the plate for an aspect ratio of 0.5
were highlighted in the reproduction of the Timoshenko table in Figure 4. In undertaking this work
RMA discovered that the value for My was incorrect, [3]. Itis likely that this is a typographical error
since the correct value is 0.0120 rather than 0.0102. The error means that the transverse moment
at the centre of the plate is non-conservatively specified as some 15% below the correct value. This
would not be of major concern for a steel plate since the maximum moment is elsewhere. However,
if the engineer used this value for sizing the transverse reinforcement in a RC slab, then this might
cause a problem.

Copyright © Ramsay Maunder Associates Limited (2004 — 2016). All Rights Reserved
7



Finite Element Model of the Plate

The Levy solution, which is theoretically exact, provides the practising engineer with an ideal
opportunity to verify has/her finite element software. The finite element solution, whilst
approximate for coarse meshes, should converge, with mesh refinement, to the theoretical solution.
This is demonstrated to be the case in Figure 8 where the results for regular meshes of lower and
higher order CFE plate elements are used to predict the moment to cause first yield.
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Figure 8: Convergence of CFE results to the Levy solution

As expected both lower and higher order elements converge to the theoretically exact Levy solution,
the higher order element converging significantly more rapidly than the lower order element.
Having conducted such a software verification study, the engineer is well placed to assume that the
software is sound. Further, if he/she considers another problem of a similar nature, for example
with a patch load over just a portion of the plate, which no longer possesses a known theoretical
solution, then faith that finite element system will converge to the (unknown) theoretical solution
has been developed.

It should be noted, with respect to Figure 8, that depending on the order of the element, the
moment converges from either below (higher order) or above (lower order) the theoretical solution.
This is an important point to note since the direction of convergence for point quantities in a finite
element model (such as the maximum moment of Figure 8) cannot be guaranteed. This is contrary
to the advice set out in the fib Model Code for Concrete Structures 2010, which states that:
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‘The internal stresses are lower, compared with an exact solution’

http://www.ramsay-maunder.co.uk/downloads/The%20fib%20Model%20Code%20for%20Concrete%20Structures%202010.pdf

The MC2010 code is simplistic in this respect and simply incorrect.

Yield Criteria for RC Slabs and Steel Plates

The vyield criterion appropriate for RC slabs is different to that which is appropriate for steel plates.
The appropriate criterion for RC slabs is the Nielsen or square yield criterion whereas for steel plates
it is the von Mises or elliptical criterion.

The appropriateness of a particular yield criteria for a particular material comes from the proposal of
a mathematical model and then validation of this model with results observed from physical
examples, c.f., Figure 1. Whilst not a full and detailed validation of the square criterion for RC slabs,
the example shown in Figure 9 goes a long way to demonstrating the appropriateness of the square
criterion.

U o o o T A
V////////ﬂ/,_///////////////////////f////////////////////2

Figure 9: Quantitative verification of the square criterion for RC slabs

In a similar manner, validation of the elliptical criterion for steel plates was provided in 1932 by
Taylor & Quinney who wanted to establish which of the Tresca or von Mises criteria were more
appropriate for various ductile metals. The results, shown in Figure 2, demonstrated,
unambiguously, that the von Mises criterion that is most appropriate.
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Figure 10: Quantitative verification of the elliptical criterion for steel plates

Limit Analysis

Limit analysis is a technique for arriving directly at the collapse solution for a structure without
having to increment along the load path, as would be required using conventional finite element
techniques. It assumes a rigid-perfectly plastic material model and requires that the material be
sufficiently ductile. The theoretically exact solution, like that for a linear elastic strength of materials
problem, satisfies all the static and kinematic conditions. There are also, as described above for
finite element analysis of linear elastic structures, two formulations which approximate the
theoretical solution in different manners, either satisfying the kinematic conditions at the expense of
the static conditions or vice versa as shown in Table *.

Table 3: Limit analysis formulations

Attributes Kinematics Statics Techniques | Application
Upper Bound Unsafe Strong Weak Yield Line | Assessment
Exact Strong Strong
Lower Bound Safe Weak Strong EFE Design

Yield Line Technique for RC Slabs (Upper Bound)

The vyield line technique began life as a hand calculation method for predicting the collapse load of
RC slabs. Implicitly it makes use of the square yield criterion. This section will present how, over the
years, this method has been automated so that analysis may now be conducted using computers
and the landing slab example of Figure 11 will be used as a vehicle for this expedition.
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Figure 11: Landing Slab

In computerising the yield line method, a finite element mesh of rigid triangular elements is adopted
and each of the element edges is assumed a potential yield line. For example, the simple mesh
shown in Figure 12 of seven elements has a simple yield line mechanism, which looks like an
(inverted) pitched roof.

B“

-

La

(a) Model (b) Yield lines and displaced shape

Figure 12: Basic fan mechanism

A coarse mesh of the landing slab, Figure 13, comprises four such mechanisms and, using an
optimisation procedure, where the collapse load is minimised, the collapse mechanism of Figure 13
is obtained.

(a) Mesh (b) Yield Line Pattern

Figure 13: Results from 1997 (1=5.86)

A more refined and unstructured mesh allows more possible collapse mechanisms and the critical
collapse mechanism, although ‘fuzzy’ can begin to be discerned — Figure 14.

Copyright © Ramsay Maunder Associates Limited (2004 — 2016). All Rights Reserved
11



TS
RRE
/
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Figure 14: Results from 2011 (41=5.47)

Having obtain an idea of the critical collapse mechanism then a coarse mesh which includes this
mechanism can be constructed and geometric optimisation performed to further lower the collapse
load, i.e., hoe in on the theoretical solution — Figure 14.

(a) Mesh (b) Yield Line Pattern

Figure 14: Results from 2011 — Geometrically Optimised (1=4.38)

The yield line technique has been successfully further automated using the DLO method. This
approach can rapidly produce high quality yield line solutions that are reliably close to the
theoretical solution as illustrated in Figure 15.

PP IR PP II i e e Lk P

(a) LimitState:SLAB (4=4.21) (b) RMA:EFE (A=4.20)
Figure 15: State of the Art Results from 2014

Using an EFE approach, as discussed in the next section, a dual solution lower bound solution to the
upper bound DLO solution, which enables a very close bounding of the theoretical solution thereby
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providing engineers with confidence that the software has recovered a good representation of the
true solution.

Equilibrium Finite Elements for RC Slabs (Lower Bound)

Unlike the yield line technique, an equilibrium approach such as adopted by EFE provides a lower
bound estimate of the collapse load irrespective of the mesh adopted. It does this be ensuring that
the moment fields are in strong equilibrium with the applied loads and that the moment field is
always within the relevant yield criterion. Whilst Figure 12 provided a simple way in which to
understand the computerisation of the yield line technique, a simple RC beam problem will be used
to illustrate the lower bound approach.

100kN
Ny
N\ k—@
I 0.75m I 0.25m l
P

Ry R,

Figure 16: Fixed beam under point load and free-body diagram

The beam is twice statically indeterminate, i.e., there are two unknown moment reactions. The total
moment field for this beam may then be considered as the sum of a particular solution, which
satisfies equilibrium with the applied load, and two self-balancing or hyperstatic moment fields,
which are in equilibrium with zero applied load as shown in Figure 17.
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Figure 17: Particular and self-balancing hyperstatic moment fields

The moments at the two ends of the beam and under the point load can be collected together in
matrix form and equated to, what we know, to be the collapse moments for this problem:

0 1 11(P —me
[0.1875 0.25 1]{¢1}={+mc} (3)
0 0 1l{g, —-me

If we choose a beam of t=0.01m thickness and yield stress of §,,=275MPa then the moment capacity
is:
S, - t?
4 = 6875Nm/m
4 (4)

&
I
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Three equilibrium solutions are shown for this problem in Figure 18. The elastic solution with the
load to cause first yield of 32.6kN, the theoretical collapse solution with collapse load of 73.3kN and
the particular solution scaled to develop a plastic hinge under the load (36.7kN).
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Figure 18: Equilibrium solutions, elastic, lower bound and theoretical collapse

As already discussed in this paper, for the safe design of a structure the engineer requires the stress
or moment fields to balance the applied load so that he/she can then size reinforcement to
withstand these moments, i.e., make the design sufficiently strong. The equilibrating moment fields
provided by EFE then are perfect for the design of RC slabs. Consider the rectangular RC slab of
Figure 19 which is uniformly loaded and simply supported on two adjacent sides.

2.00m |

1.00m

T+

iz

Figure 19: Uniformly loaded rectangular slab simply supported on two adjacent sides

A yield line analysis was first conducted for this slab, in the manner outlines previously, using first a
refined unstructured mesh to provide understanding of the critical collapse mechanism and then
with a coarse mesh incorporating the critical mechanism upon which geometric optimisation could
be performed. The results are shown in Figure 20.
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0.847m

(a) Refined unstructured mesh (30kN/m?) (b) Coarse optimised mesh (23.61kN/m?)

Figure 20: Yield line results for RC slab

The next step was to analyse the slab in EFE and the lower bound results are shown in Figure 21.

Note the very close agreement between the collapse loads from the upper and lower bound
approaches.

Top Steel (Hogging) Bottom Steel (Sagging)

Contours of hogging and sagging reinforcement utilisation are shown ranging between 0 and 1 for hogging and between 0 and -1 for
sagging. Superimposed on these are the relevant hogging or sagging trajectories. These diagrams show the engineer where
reinforcement steel is required, and the optimal direction for the reinforcement — parallel to the principal moment trajectories.

Figure 21: Initial design - results from EFE (23.6kN/m?)

In Figure 21, the principal moment trajectories are shown. These show directly the optimal direction
for the reinforcement and indirectly the required moment capacity of the reinforcement. It is clear
from the trajectories that the optimal reinforcement should be oriented at about 45 degrees to the
sides of the slab. If this is done then it is possible to remove two of the four layers of reinforcement
completely. To confirm this intuitive leap, the reinforcement in EFE was rotated, and two layers
removed and the result is shown in Figure 22.

Top Steel (Hogging) Bottom Steel (Sagging)
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Figure 22: Optimised design — results from EFE (23.3kN/m?)
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A small but insignificant reduction in the collapse load is noted for this optimised design indicating
that in this example rotating the steel placement can lead to significant reductions in the required
amount of reinforcement, in this case a 50% reduction. It should be noted that the design above
only considers the ULS condition. The SLS conditions of maximum deflection and cracking will lead
to their own reinforcement requirements, which may mean adding back some of the steel here

removed.

Equilibrium Finite Elements for Steel Plates (Lower Bound)
The plate problem of Figure 4 is now reconsidered in terms of its plastic collapse load using the
elliptical yield criterion. The collapse load varies with aspect ratio in the manner shown in Figure 23.

Normalised Collapse Load
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Figure 23: Collapse pressure from EFE as a function of aspect ratio

The collapse load from EFE is significantly greater than that predicted by beam theory and for the
plate configuration considered, aspect ratio of 2, the utilisation contours are plotted in Figure 24.
When EFE is used with the square yield criterion then the collapse load is 1.5 times the load to cause
first yield for the beam.

Beam

36.7kPa
Figure 24: Contours of utilisation for the plate problem and collapse loads

Elastic Plastic
Square Elliptical

34.5kPa 55.0kPa 63.5kPa

Copyright © Ramsay Maunder Associates Limited (2004 — 2016). All Rights Reserved

17



The reason for the 2/+/3 factor between the collapse load for the square and elliptical criteria will be
explained after first considering another example where using the elliptical criterion leads to a
significantly lower collapse load than would be obtained with the square criterion. This problem is
the same constant moment problem presented, by RMA, in the IStructE’s ‘And Finally ...” section of
August edition of The Structural Engineer magazine — see Figure 25. The reason for presenting this
problem was that it exhibited very clearly a situation where multiple yield line patterns all with the
same collapse load could be easily established. As presented, the problem was considered as an RC
slab where the square yield criterion is appropriate. The collapse load was determined as twice the
moment capacity of the slab, i.e., @ = 2m,,. If the elliptical criterion were used then the collapse

load would have been factored down by 1/+/3.

And finally...

This month we bring you a question from Ramsay Maunder Associates on the yield-line
technique for concrete slabs. The answer will be published in the September issue.

A square, unitormly and lsotroplcally reinforced concrete slab - *
I supported on thres corner supports and loaded at
the free corner with a point load  kN. The slab has a plastic
moment capacity of i, kNm/m and obeys the usual square
yleld criterion. The yleid-line technique requires the engineer o
to postulate a collapse mechanlsm, and then determine the &
corresponding collapse load. Differant collapse mechanlsms may
hawe different corresponding collapse loads and, as tha ylald-line
technique produces an upper bound to the theoretical collapse
load, the mechanism with the lowest collapse load Is taken &5
being the chosest to the thecretical solution. ‘Square slab
Four candidate collapse mechanlsms are shown Inthe ¥ problam with four
Tigure and the reader Is asked to identity the one with - candlidate collapse
the Inwest collapse load. S— mechanisms

4 N

Answers to August’s quiz

Tatal Moment d
In August, we
presented four
candidate collapse
mechanisms for a
square, uniformly
and isotropically
reinforced
concrete slab
supported on
three corner
supports and
loaded at the free
corner with a point
load Q@ kM. The

Marment per Linf Lensth

reader was asked a

to identify the one . v T
with the lowest Constant moment Calculation of

collapse load. field at typical point moment per unit length

The answer is that all the candidate yield-line i are also shown. The form of this moment
patterns have the same collapse load @ kN. i field implies that the four yield-line patterns
There exists a simple constant moment field | in the question are all equally possible, as

that is in equilibrium with the applied load and | indeed are many more that are not shown. The

As an example, shows the solution
for the collapse load for pattern D, i.e. @ = 2m,.
This solution is the theoretically exact

lution b for this problem, the same

the reactions. The components of this field i collapse pattern only has to satisfy the usual relation between load and plastic moment
are described, at a typical point, in . i geometric rules for yield-line patterns taking capacity is achieved in a lower-bound
where the corresponding principal moments | into account the supports. solution.

Figure 25: RMA’s ‘And Finally ..." question and answer [4, 5]
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The two examples of the plate from Figure 4 and the ‘And Finally ... plate show the two extremes of
difference in collapse load between the square and elliptical yield criteria and this is depicted
graphically in Figure 26.

1.5 .
Sag/Hog Hog/Hog

0.5

Plate problem of Figure 4 {Elliptical)

‘And Finally ..." {Elliptical)
.DI.D /—
-1.5 .0 -0.5 0 0.5 0 1.5

Normalised Minimum Principal Moment [ i)

0.5
------------- =% 0577
3
E ‘—\

2 —~ . : :

= 5] 54T / AndFinally ..." (Square)
v Plate problem of Figure 4 (Square)

Sag/Saqg - Hoog/Sadg

MNormalised Maximum Prindpal Moment ( 714

Figure 26: Collapse of two plate problems in principal moment space

In terms of the load factor A with subscripts e and s for the elliptical and square yield criteria
respectively, then:

2 (5)

Closure

In this presentation, we have aimed to illustrate some of the research and development work
undertaken at Ramsay Maunder Associates over recent years. With Equilibrium Finite Elements
(EFE), it has been possible to glean considerable insight into the way RC slabs and steel plate
members behave as they collapse. It is hoped that some illumination has been shed on the following
points:

e Simulation governance and its components Verification & Validation
e Characteristics of different FE formulations for linear elasticity — CFE & EFE

e Essential requirement of Equilibrium for structural design
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e Equilibrium is only achieved with a CFE model as the mesh is refined

e Risk of wusing an inappropriate mathematical model (beam versus plate
representation)

e Verification of FE systems by modelling a problem with a known theoretical solution

e Validation of different yield criteria for RC concrete and steel members

e Characteristics of different formulations for limit analysis

e Yield line techniques, how they have been computerised

e The danger of unsafe collapse load prediction through yield line analysis

e Lower bound, safe, limit analysis through an EFE formulation

e EFE in the design of RC slabs — rotate reinforcement and get rid of 50% of it!

e EFE in the assessment of steel plates — significant differences in collapse loads

through different yield criteria.
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