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Stress at the Centre of a Square Plate with Linear Boundary Tractions 

The Challenge 
A unit square homogeneous and isotropic steel plate is centred at the origin of the XY-plane with 

edges parallel with the coordinate axes and is loaded with linearly distributed normal and tangential 

boundary tractions as shown in figure 1.  The plate can be assumed to be thin so that a plane-stress 

constitutive relationship is appropriate and for convenience a unit thickness may be used. 

 

Figure 1:  Benchmark Challenge Number 1 

Raison d’être for the Challenge 
This challenge derives from a philosophical question; can a problem be specified where the finite 

element response is null?  At first sight it seems a little improbable that such a problem can be 

conceived.  However, when one realises that the boundary tractions are applied to the model in the 

form of consistent nodal forces and that if suitable tractions are chosen such that the consistent 

nodal forces cancel out then such a problem is easily found.  This is the case for the challenge 

problem when a single four-noded element is used.  Further consideration of the problem shows 

that it possesses a theoretically exact solution which involves linear stress fields that can be 

captured exactly with a single eight-noded element.  The theoretically exact von Mises stress at the 

centre of the plate is zero and therefore both the single four-noded element and the single eight-

noded element predict this value correctly.  Disappointingly, however, it will be seen that even 

though the exact solution is recovered for the single eight-noded element, the available post-

processing facilities in many commercial finite element systems will not allow the user to appreciate 

this fact because they use linear-interpolation of nodal stress values to simplify plotting procedures. 

 

The Challenge 

 

The challenge is to produce two models of this problem in your finite 

element software and then answer some questions.  The first model 

should use a single four-noded element and the second a single 

eight-noded element.  As engineers interested in the integrity of the 

plate we might wish to see the distribution of von Mises stress over 

the plate.  We would like you to provide: 

 

a) Numerical values for the von Mises stress at the centre of 

the plate for both models, 

b) A statement as to which of these values is correct, 

c) Contour plots of von Mises Stress for both models, 

d) A brief commentary on how you modelled the problem 

and what, if anything, of interest you note about this 

problem – please include details of the software that you 

used. 
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Consistent Nodal Forces 
Whilst the plate model is loaded with (linear) boundary tractions, the finite element model can only 

take loads at nodes.  As such the traction distributions need to be converted to (statically) equivalent 

nodal forces and this should be done in a manner consistent with the finite element formulation.  For 

the normal tractions considered here and for the four-noded element this process is identical to 

‘lumping’ the resultant force at the nodes in a manner such that both the traction distribution and 

the nodal forces produce the same resultant force and moment.   However, for the eight-noded 

element, a similar lumping approach leads to a non-unique conversion process where there is an 

unknown load � which can take on any positive or negative value.   

 

Figure 2: Statically equivalent conversion of a uniform traction to nodal forces on a quadratic edge 

Different values of � will lead to different finite element solutions and this is demonstrated for a 

square plate with uniform normal tractions. 

 

Figure 3: Normalised finite element strain energy for different values of � 

The exact strain energy (unit normalised strain energy) is seen to be captured when � � 1 6�  which 

is also precisely at the minimum of the quadratic curve running through the six points.  This is no 

accident as this value of � is that obtained by calculating it in a consistent manner with the quadratic 

A unit square plate (with unit 

thickness) is loaded with uniform 

normal tractions of unit 

amplitude.  This problem has a 

theoretically exact solution: 

� ���	
�	� � � 0
10 � 
The exact strain energy is defined 

in terms of Young’s Modulus as: 

� � 12� 

The figure show finite element 

results for the strain energy 

(normalised with the exact value) 

for six different values of �.  The 

finite element model used four 

six-noded triangles and can 

capture precisely the exact 

solution. 

Statically equivalent conversion 

(equal resultant force and moment) 
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shape functions.  This example thus offers a convincing argument as to the reason why equivalent 

nodal forces should be generated in a consistent manner.  If the reader does not believe this 

observation then he/she could easily run the models above and observe that the exact constant 

stress field is only captured when � takes on the value obtained using a consistent approach.   

Let us look in a little more detail at one of the non-consistent or inconsistent sets of nodal forces, say 

the case where � � 1 3�  as, in the absence of any knowledge of the correct consistent manner of 

calculating equivalent nodal forces this might be the most naturally assumed distribution to 

represent a uniform traction distribution.  The nodal forces for this value of � can be decomposed 

into a sum of the correct consistent nodal forces plus an additional set of self-balancing nodal forces 

as shown in figure 4.  

 

Figure 4:  Decomposition of inconsistent nodal forces 

Considering the self-balancing part of the inconsistent nodal forces one could ask the question; can a 

traction distribution be found for which these self-balancing nodal forces form a consistent set of 

nodal forces?  The answer to this question is in the affirmative.  The distribution is a quadratic 

(Legendre) polynomial as shown in figure 5. 

 

Figure 5:  Quadratic self-balancing traction distribution 

All the sets of inconsistent nodal forces shown in figure 3 may be decomposed in a similar manner to 

that described above with each set leading to different amplitudes for the self-balancing set of nodal 

forces and, therefore, different scale factor w.  In other words, if one does not apply the boundary 

loading in a consistent manner then the model will be loaded with an additional set of self-balancing 

nodal forces consistent with the quadratic traction distribution of the form shown in figure 5.   

What effect will this additional self-balancing load have on the model?  Well in the first instance it is 

going to change the stress distribution local to the static boundary and, as shown in figure 3, this 

leads to an increase in the strain energy.  However, as it is self-balancing then, by appeal to St 

Venant’s Principal, one might hope that the influence of the self-balancing tractions on the stress 

distribution will decay with distance from the static boundary boundary.  This effect is illustrated in 

The quadratic traction distribution is a standard quadratic 

Legendre polynomial scaled by the factor w.  The consistent 

nodal forces corresponding to this traction distribution are 

calculated in Appendix 1 so that the value of w appropriate 

for the self-balancing nodal forces in figure 4 can be 

determined as: 

� � 5
2 
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figure 6 where the self-balancing nodal forces of figure 4 are applied to a longer version of the model 

shown in figure 3. 

 

 

 

 

 

 

 

 

Figure 6: Decay of stresses induced by self-balancing nodal forces  

In a manner similar to the way in which traction distributions need to be applied as consistent nodal 

forces, for an appropriately restrained model the nodal reaction forces will emerge in the same 

form.  So, for example, taking the 6m long plate shown in figure 6 and assuming that St Venant’s 

principal does its job, then if the bottom edge were restrained from displacement in the Y direction 

and any of the sets of nodal forces shown in figure 3 applied to the top edge of the model, the 

reaction distribution at the bottom edge should correspond to the consistent set of nodal forces.  It 

is therefore clear that some thought needs to be exercised when interpreting distributions of nodal 

reaction force since they can, potentially, be as confusing as the applied nodal force distributions.    

Since calculating and applying consistent nodal forces is a tedious and potentially error-prone 

process, commercial finite element software tends to automate this for the engineer; the engineer 

applies boundary tractions and the software converts these, internally, into consistent nodal forces.  

To illustrate the values of these forces for the challenge problem they were calculated and are 

shown in figure 7.  

 

Figure 7: Consistent nodal forces for the two single element models 

The reason why the single four-noded element produces a null result for this problem is now clear 

since the net nodal forces are all zero.  This is not the case for the single eight-noded element which 

The model in this figure is the same as that shown in figure 3 

except that the length in the Y direction has been increased to 

6m to allow the stresses to diffuse.  It is loaded with the self-

balancing nodal forces shown in figure 4.  The average value of 

the direct stress in the Y direction has been calculated at 1m 

intervals along the length of the plate and these have been 

plotted in the graph.   

The effect of using an inconsistent set of nodal forces is clearly 

seen in that the average stress on the static boundaries is 

(erroneously) increased by nearly 50%.  However, by St Venant, 

these erroneous stresses decay rapidly as one moves away 

from the static boundary.  
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has non-zero nodal forces, at least for the mid-side nodes, and these thus lead to a non-null finite 

element solution which, as will now be shown, is the exact solution. 

The Theoretically Exact Solution 
The challenge problem was conceived through specifying a set of boundary tractions which held the 

plate in equilibrium and led to zero net consistent nodal forces for the single four-noded element 

model.  The tractions are linear along the model boundaries and the theoretically exact solution 

must have stresses that equilibrate with these tractions.  The finite element results for the single 

eight-noded element exhibit such linear distributions on the boundaries and these stress fields are 

shown in figure 8 together with the boundary tractions corresponding to each component of stress 

and expressions for the stresses that fit the contours and equilibrate the boundary tractions. 

 

Figure 8:  Stress field and corresponding boundary tractions (eight-noded element model) 

Two further checks will show that the stress field shown in figure 8 is the theoretically exact one: 

a) The challenge problem involved no body loading and so the exact stress field must reflect 

this.  This can be confirmed by checking that the internal equilibrium conditions of the 

second column of table 1 are satisfied. 

b) The strain field corresponding to the exact stress field will be compatible with a continuous 

displacement field.  The strain compatibility conditions are given in the third column of the 

table and involve second derivatives of the strains.  It is easily seen that these are satisfied 

since the stresses, and hence the strains, are of first degree (linear) so that all second 

derivatives are zero.  

 

Table 1:  Postulated stress field and (Internal) conditions for a theoretically exact solution 
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Low Fidelity of Post-Processing in Commercial FE Software 
Whilst the single eight-noded element was able to capture the exact solution to the challenge 

problem, the low-fidelity of the post-processing in many commercial finite element systems means 

that this fact is not immediately evident.  For example whilst the linear stress components are 

plotted correctly, the von Mises stress, which is piecewise linear about the line � + � � 0, is not. 

��� = 2��� + ��� = 	2|� + �| 
The contour plots shown in figure 9 give the exact distribution and that offered by two versions of 

the same popular commercial software.  The same contour range and colours are used for all three 

plots. 

 

Figure 9:  Contour plots of von Mises stress for the challenge problem 

If the von Mises stress at the centre of the plate is read from the contour plots then the values for 

the two versions of the commercial software would be 2 and 1 compared with the exact value of 

zero! 

Discussion 
The reason that a problem could be conceived where the finite element response is null is a 

characteristic of the standard displacement formulation used in the majority of commercial finite 

element systems.  The formulation requires traction distributions to be converted into consistent 

nodal forces and this process is one where certain information about the original boundary tractions 

is lost.   

This idea can be illustrated by attempting to apply the quadratic traction distribution of figure 5 to 

the edge of a four-noded element.  Lumping according to equilibrium requirements (equal net force 

and moment) leads to the consistent nodal forces for this element and so it is easily seen that the 

consistent nodal forces for this traction distribution are zero – see Appendix 1.  Thus any amount of 

this quadratic traction distribution could be added to the edge of an (four-noded) element without 

the element feeling it.  This is simply a manifestation of what is called weak equilibrium – whilst the 

correct resultant forces and moments are transmitted through the elements by nodal forces, point-

by-point equilibrium is not generally satisfied for coarse meshes. 

A further manifestation of the loss of information that may occur through the conversion of traction 

distributions to consistent nodal forces is that concerning the particular edge on which the traction 

was applied.  This was the case with the challenge problem where for both element types the nodal 

forces at the corners of the plate cancelled out. 
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For the challenge problem, then, we see that whilst the single eight-noded element recovers the 

exact solution, the single four-noded element is incapable of responding despite applying the loads 

in the correct manner.  The resulting null stress field does not equilibrate with the applied boundary 

tractions.  As the finite element method is an approximate method some form of weakening of the 

solution has to be accepted.  For the standard displacement element this weakening occurs in the 

equilibrium of the resulting stress fields as has been shown.   

Whilst a coarse mesh of displacement elements might show significant violations of equilibrium, 

mesh refinement generally leads to finite element results that are close to equilibrium in a point-by-

point sense.  There are two distinct types of mesh refinement that can be performed and these are 

known as p-refinement and h-refinement.  With p-refinement the number of elements and 

geometric arrangement of the mesh is kept constant whilst the degree of approximation in each 

element is increased.  The process of changing from four-noded elements to eight-noded element, 

as done for the challenge problem, is an example of p-refinement and in this case convergence was 

rapid – from a null solution to the exact solution.  For the challenge problem, h-refinement can be 

demonstrated by performing uniform element subdivision of the four-noded element.  The results 

for this process are summarised in figure 10 which shows the convergence of strain energy and the 

maximum von Mises stress with number of degrees of freedom.  One might be surprised, and 

possibly worried, that even for the most refined mesh an error of nearly 3% remains in the 

maximum von Mises stress!   

 

Figure 10: Convergence (h-type) for the four-noded element 

The way in which weak equilibrium is gradually pushed towards strong point-by-point equilibrium 

can be demonstrated further by plotting pertinent components of the finite element stress field and 

comparing these with the prescribed tractions.  This has been done in figure 11 for the top edge of 

the challenge problem and for the first two levels of h-refinement after the single four-noded 

Results generated by Matt Watkins of ESRD Inc. using the software tool StressCheck. 
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element.  The finite element stresses were unaveraged and show significant discontinuities at the 

nodes. 

 

 

 

 

 

 

Figure 11:  Convergence of finite element boundary stresses for four-noded models 

Closure 
This challenge problem, which started life as a philosophical quest to find a real problem for which a 

valid finite element method would respond with a null solution, has led, via a canter through 

consistent nodal forces and exact solutions, to a conclusion which most seasoned FE analysts will be 

familiar with.  This conclusion is that finite element solutions are approximations of the truth and 

that with conventional conforming elements it is strong equilibrium that is compromised.  The 

solution to this issue is to ensure that the mesh is suitably refined so that the quantity of interest can 

be demonstrated to have converged to within sufficient accuracy to the exact solution.  The level of 

refinement required for reasonable engineering accuracy might be quite significant as seen in figure 

10 for the relatively simple challenge problem. 

The challenge problem has highlighted a new form of finite element error that the user needs to be 

aware of - this being the inability of some commercial software to render the results correctly.  This 

form of error might be termed the ‘post-processing fidelity error’.  This error caused a number of the 

challenge responders to report an incorrect value for the von Mises stress at the centre of the plate.  

The reason for this error is that most commercial finite element systems opt to use some form of 

linear interpolation of nodal results to define the field within the element for the purposes of 

contour plotting.  This is not appropriate for the displacement fields of elements with quadratic 

interpolation functions and also for the stress components which may contain quadratic terms.  It is 

certainly inappropriate for principal quantities and stress invariants which, by definition, may be 

non-linear and might even, as in the challenge problem, contain gradient discontinuities.   

 

Figure 12: Post-processing fidelity error in von Mises stress 

This figure plots the two components of stress, Syy and 

Sxy, along the top edge of the model for meshes 2 and 

3.  For equilibrium these stresses should equilibrate 

with the stresses corresponding to the applied tractions 

(shown in the figure as ‘exact’).  Whilst the finite 

element stresses are converging towards the exact 

distribution for these coarse meshes there is a 

significant violation of equilibrium both in a point-by-

point sense and also in an integral sense – the resultant 

force of the finite element stress distributions is 

significantly different from the applied resultant force. 
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The contour plots shown in figure 12 are the von Mises stress produced by the commercial software 

CS1 for increasingly refined meshes of eight-noded elements – note that the actual finite element 

solutions are exact and identical for each of these meshes. 

Of the respondents to the challenge three provided answers that would withstand the scrutiny of a 

design review or audit.  The first of these used mesh refinement to demonstrate that the result for 

the eight-noded model could be reasonably assumed to be the exact solution whilst the second 

recognised immediately that the problem had a theoretically exact solution independent of any 

finite element approximation.  The third respondent recognised that a change of coordinate system 

could transform the challenge problem into a more familiar one, namely, that of pure bending – see 

figure 13.  Having mentally performed the transformation the respondent then used his 

understanding of how the standard four-noded and eight-noded elements perform under pure 

bending to state the results (correctly) without recourse to finite element software.  This response 

can only have come from someone with an intimate knowledge of continuum mechanics and the 

finite element method! 

 

Figure 13:  One respondent’s transformation of the challenge problem  

Other respondents guessed at the correct result and some guessed correctly despite the low-fidelity 

of the finite element results they were presented with (see figure 9).  However, a reviewer adopting 

the philosophy of the Napoleonic Code – ‘Guilty until Proven Innocent’, is unlikely to be satisfied with 

such a response. 

Producing finite element results that have not been verified is just one of many forms of finite 

element malpractice that occur in the industry.  Many times it goes unquestioned and components 

and structures are built based on erroneous analysis results.  Often, where sufficient ductility exists, 

the inherent redundancy of a structure will allow the stresses and therefore the internal forces to 

redistribute safely.  Other times, however, this can lead to a major disaster as in the case of the 

Sleipner Drilling Platform where an extremely crude and unrefined finite element model predicted 

stresses some 45% below the actual value.  So it is incumbent on the engineer and his/her manager, 

if they want to rest well at night, to ensure suitable verification has taken place. 
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Appendix 1:  Consistent Nodal Forces for a Self-Balancing Traction 
Consistent nodal forces for a self-balancing quadratic traction distribution are calculated for edges of 

a four-noded element and an eight-noded element.  The traction distribution, t, is shown for a unit 

edge in figure 14.  The distribution is the basic quadratic Legendre polynomial scaled by a factor w.  

Two edge ordinates are shown with s having length dimensions and � being non-dimensional.  The 

shape functions are given with the superscript indicating the number of nodes for the element.   

 

Figure 14:  Self-balancing traction distribution and four-noded and eight-noded element edges 

The expression for a consistent nodal force is: 
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The consistent nodal forces at all nodes on the edge of an eight-noded element are non-zero.  The 

consistent nodal force is calculated for the central node and the corner node forces are deduced by 

equilibrium considerations: 
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Appendix 2:  Results from an Equilibrium Plate Membrane Element 
Following the spirit that these challenge problems should be educational, some results generated 

using a p-type equilibrium element are presented along with the corresponding standard 

displacement element results.  The problem is a deep tapered cantilever that is built-in at the deep-

end and loaded with a uniform tangential traction at the free-end.  A mesh of four quadrilateral 

elements is used and the results are presented in terms of the vertical displacement, V, at point A 

and the stress resultants along X-X.  For the equilibrium element, linear statically admissible stress 

fields (p=1) were used whilst for the displacement element both four-noded and eight-noded 

elements were used.  This problem has no known closed-form exact solution so that the results 

presented as ‘exact’ are obtained from a highly refined and converged finite element model.   

 

Figure 15:  Deep tapered cantilever problem with results 

The displacements from a displacement element are continuous at the nodes whereas for an 

equilibrium element they are not.  The displaced shape for the equilibrium element has the 

displaced edges shown in red and the nodal averaged displaced shape shown in grey.  A small 

discontinuity can be seen but nonetheless the average displacement is at least as accurate as that 

produced by the displacement elements. 

The stress resultants N (normal), T (tangential) and M (moment) on X-X are calculated by integrating 

the finite element stresses along the section.  We have seen already that displacement elements do 

not generally, particularly for coarse meshes, satisfy equilibrium and the discrepancy in the stress 

resultants between the displacement element results and the exact values is not insignificant!  For 

the equilibrium element, even though the finite element stresses are not the exact values, provides 

an equilibrium set of stress resultants.  Since the equilibrium elements produce statically admissible 

stress fields other quantities such as principal stress trajectories may also be simply plotted.  This 

sort of plot gives a complete description of the way in which the loads are transmitted through the 

structure in the form of stresses.  Stress resultant arrows have been added to the figure to indicate 

the main compressive and tensile load paths and these might be further used to think of the model 

as a strut and tie system. 


