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Abstract

During my internship at Ramsay Maunder Associates, I completed several projects.

The first one deals with a beam subjected to an end moment. This allowed to see a way to verify

ANSYS results, when the theoretical solutions are known. A study on the beam element of the

software also allowed to see which element is the best according to the applied load.

The second study is on a plate with a hole. The average stress and the stress concentration factor

K were defined, and it was possible to compare the simulated K and the theoretical K. It appeared

that the values of K depended on the length over width ratio of the plate and also on the diameter

of the hole over width ratio.

The third study introduces the Lamé equations on a thick cylinder. It appeared that, for this model,

the ANSYS elements were not that good and that another element, called the Lamé element, could

be preferred. A design chart for internally pressurised pipes could then be done using the Lamé

element and using three different yield criteria. The difference between those yield criteria was also

highlighted.

The fourth study tackles a problem with rotors. In this section, a few examples of a book were

reproduced. In doing so, it became apparent that one of the examples in the book was wrong, so it

was possible to correct this.

The last study is about a commercial project given by a company that designs balustrades. The

model studied was a corrugated plate, it was found that the design given by the company complied

with certain European standards. However, the study could not be completed before the internship

ended.

Acknowledgments

I would like to thank Dr. Ramsay for being so supportive of my work and for teaching me so

much about his profession.

1 Introduction

I completed my second year internship at Ramsay Maunder Associates, a UK-based engineering

firm specialising in finite element analysis. My tutor Dr. Angus Ramsay gave me tasks to do and

followed me in my work for three months. I did this internship from France, as I could not go to
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England because of the Covid-19 pandemic. However, the follow-up was only slightly affected since

I had an appointment with my tutor every morning to review my work.

Ramsay Maunder Associates is a small company : there is only one employee, who is Angus

Ramsay himself. However, he works with several associates, including Dr. Maunder, who is his for-

mer thesis director. Angus Ramsay works daily on several different projects which are mostly sent

to him by private companies or law firms. He is also a researcher and has published many articles,

he is currently trying to get another one published.

Angus Ramsay works primarily with ANSYS APDL software. I had never used it before, so he

asked me a few weeks before my internship to download the software and to familiarize myself with

it. At the beginning of the internship, Angus Ramsay suggested that I reproduce a study he was

doing for a company, but with a great simplification. This is how we have always proceeded during

the entire internship : he gave me projects to do, at first quite simple and then more and more

complicated depending on how I progressed and when he saw that I was more and more comfortable

with ANSYS. So, there is no predefined subject, it is rather a series of small studies that he gave

me to do and that allowed me to learn things.

In the following, a study on a beam subjected to an end moment, a study on a plate with a hole,

a study on a thick-walled cylinder, a study on rotors and a commercial project will be seen.

2 Problem of a lamp column

In order to become familiar with ANSYS, a study was first conducted on a simple case to model

with the software. In this study, a problem with a beam will be presented and it will be interesting

to see how to verify the results provided by the software. In particular, the focus will be on the

yield moment My and the plastic moment Mp, as the engineers are interested by those data.

The study is about a problem of a lamp column with a hinge, modeled with ANSYS. The details

of this and the results are shown below. The results come from a previous study conducted by

Angus Ramsay.
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To verify the results given by the software, let’s first focus on a pipe forming part of the lamp

column. It is supposed that the pipe is a beam with a circular hollow section : the inner radius

R1 = 0.05355m and the outer radius R2 = 0.05715m. The pipe is made of steel, of yield strength

σy = 355 MPa, of Young’s Modulus E=205 GPa and of Poisson’s ratio ν = 0.3. It is important

to note that it is a force-driven problem : as the focus will be on stresses and not deflections, the

values chosen for E and ν will not influence the results here.

2.1 Hand calculation of My and Mp

First of all, let’s calculate by hand the elastic and plastic limit moments for the pipe.

Yield Moment My

My = S × σy where σy is the yield strength of the material (equal to 355 MPa here) and S is the

section modulus as defined below :

S =
I

y
= π

(R4
2 −R4

1)

4×R2
= π

0.057154 − 0.053554

4× 0.05715
= 3.3593× 10−5 m3
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with y the distance from the neutral axis to the most extreme fibre (y = R2 here).

My = S × σy = 3.3593× 10−5 × 355× 106 = 11.926× 103 Nm

My = 11.926 kNm

Plastic Moment Mp

Mp = Zp × σy where Zp is the plastic section modulus defined as followed for a circular hollow

section :

Zp =
4(R3

2 −R3
1)

3
=

4(0.057153 − 0.053553)

3
= 4.4132× 10−5 m3

Mp = Zp × σy = 4.4132× 10−5 × 355× 106 = 15.667× 103 Nm

Mp = 15.667 kNm

2.2 First modelisation with ANSYS

Then, let’s model this pipe with ANSYS to check whether the results will be the same as those

calculated above.

A pipe of one meter along the z axis was modeled and a circular hollow section with the inner

radius R1 and the outer radius R2 as seen above was defined. A mesh of 8 elements was used, with

the default linear shape functions.

A moment of 1 kNm was then applied on one end of the beam, and all degrees of freedom were

constrained on the other end. The results obtained are shown in Figure 1 when plotting the X-

component of stress. As seen on the graph, the maximum stress is 29.8 MPa. Now, let’s divide the

yield strength σy by this result : a scale factor equal to 355
29.8 = 11.9 is thus obtained. It means that if

the load applied is 11.9 times greater than the initial load (1 kNm), the beam will reach the elastic

limit σy = 355 MPa. This corresponds to the calculated result : it was seen above that the yield

moment My is equal to 11.926 kNm and it was possible to verify that when a moment of 11.9 kNm

is applied on the beam with ANSYS, the maximum stress is equal to 355 MPa.
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Figure 1: X-component of stress for a load of 1 kNm

Now, let’s check the results for Mp. According to the calculations,
Mp

My
= 15.667

11.926 = 1.314. It

means that the beam can take around 1.3 times more load before reaching plastic limit. If a mo-

ment ten-times greater than the previous case is applied on the beam (the moment applied is now

119 kNm), it can be noted that ANSYS will stop the calculations at 0.133 s. After that time, the

moment applied has passed the plastic limit Mp and the software is not able to calculate a solution

anymore.

At 0.133 s of the simulation, the load applied on the beam is equal to 0.133 times the total load of

119 kNm, so the load applied is 0.133× 119 = 15.827 kNm. This value is very close to the plastic

moment Mp = 15.667 kNm calculated before.

Thanks to that, it is possible to verify the results given by the software.

In this short study, it was seen how to calculate by hand the yield moment and the plastic

moment of a beam with a circular hollow section. Furthermore, it was seen how to verify the results

given by the software. In any future projects with ANSYS, it should always be remembered to do

this code verification to give credibility to the results obtained.
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2.3 Study on the beam element in ANSYS

For the previous study with ANSYS, a linear beam element of 8 nodes was used. These parame-

ters were chosen without checking that there was a mesh convergence, as this was a first simulation

with ANSYS to get started with it. Now, after several weeks of using the software and having gai-

ned some experience, let’s carry out a convergence study of the beam element. This was facilitated

by the use of the ANSYS APDL code, which allows commands to be automated and thus a large

number of simulations to be run by changing a few parameters very quickly and easily.

There are two parameters that can be changed to refine the beam element : the ”p” parameter and

the ”h” parameter. The ”p” parameter is the degree of the element, it can be linear, quadratic or

cubic. By default, it is the linear shape function that is used in ANSYS. On the other hand, the

”h” parameter is the number of elements used in the mesh. In general, the greater the number of

elements, the more accurate the solution, but the longer the calculation so compromises have to be

made.

To do the study, let’s focus on the bending moment of a cantilever beam induced by various forms

of applied load, for instance an end moment, an end load, a uniformly distributed load (UDL) and

a linearly distributed load (LDL). These cases were chosen because their theoretical results are well

known :

- For an end moment M, the bending moment in the beam is equal to the moment applied, the

moment distribution will then be constant.

- For an end load W, the bending moment in the beam is equal to −Wx where x is the distance

from the free end of the beam. The moment distribution will then vary linearly.

- For a UDL w, the bending moment in the beam is equal to −wx
2

2 , the moment distribution will

then vary quadratically.

- For a LDL, the bending moment in the beam is equal to −w0x
3

6L , where w0 is the load applied at

the fixed end and L is the length of the beam. The moment distribution will then vary cubically.

In ANSYS, the beam is modelled with a length of one metre, a rectangular section of 0.1×0.1m,

a Young’s modulus of 200 GPa, a Poisson’s ratio of 0.3 and with the element BEAM188. Two

do-loops in ANSYS APDL were used to change the number of elements (parameter ”h”) and the

shape functions of the elements (parameter ”p”). All degrees of freedom of one end of the beam

were constrained.
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For all types of loads, the focus was on the bending moment of the I-node of the first element,

which corresponds to the node at the fixed end. This also corresponds to the maximum value of

the bending moment of the beam.

When applying an end moment of 10 Nm on the beam, the bending moment was always equal to

10 Nm regardless of the number of elements or their type. This result is consistent with the theory.

In the case of an end force, a UDL and a LDL, the result varied according to the number of elements

and the type of element. The percentage errors calculated between theoretical and simulated values

of bending moments are shown in Figure 2 for the three different loads. The percentage error was

obtained with the following formula : %error = Mtheoretical−Msimulated

Mtheoretical
, with M the bending moment.

Figure 2: Percentage error for different ”h” and ”p” parameters

In the case of the end load, the quadratic and cubic elements gave the exact solution regardless

of the number of elements. This is because for a beam with an end load, the bending moment vary

linearly according to the theory : it seems like an element with a degree ”p” higher than the degree

of the solution will give the exact solution. For the linear element, up to 64 elements are required

for the error to be less than 1% which shows a rather poor convergence.

In the case of the UDL (quadratic solution), it is only the cubic elements that give the exact solu-

tion regardless of the number of elements (percentage error nearly equal to zero). With quadratic

elements, the convergence is linear and quite fast : it takes 4 elements to reach 1% error. However,

for the linear elements, a large number of elements are needed to reach the asymptotic region of

uniform convergence rate.
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Finally, for the case of the LDL (cubic solution), the cubic elements allow a very fast convergence :

it takes only two elements to reach 1% error. Quadratic elements are slightly less efficient as they

require 8 elements to achieve 1% error, and the worst ones are the linear elements which need more

than 128 elements to get to 1% error.

Note : For the UDL case, the cubic element should give an error of 0%. However, as seen on

the graph, this is not exactly the case as the error is constant and about equal to 1e-6%. Similarly

for the LDL case, the cubic element should have a linear convergence, but after a certain number

of elements the error stagnates around 1e-6% too. It would seem that the ANSYS cubic element

always produces a small error, but the cause of this error has not yet been identified.

In conclusion of this small study, it seems obvious that choosing the type of element according

to the applied load is important to have good simulated results, and one should also be careful with

the number of elements used. It also seems that whatever the type of load, the linear elements are

very poor. As this is the default element type in ANSYS, care must be taken with this while doing

a simulation.

3 Problem of a plate with a hole

The following study was conducted to determine the stress concentration factor K in a plate

with a hole, as a function of the hole diameter to plate width ratio. For this purpose, it is necessary

to conduct a mesh convergence study to choose the number of elements that will ensure the lowest

percentage error between theoretical and calculated values.

First of all, let’s define the notations of the problem.

Let’s consider a plate of length L=60mm, thickness 1m (by default) and width H=40mm. It is

pierced in the middle by a hole of diameter d=10mm, and it is made of aluminium with a Young’s

modulus of 69 GPa and a Poisson’s ratio of 0.30. The plate is pulled on both sides with a force F

of 10 MN.
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3.1 Mesh convergence for average stresses using ANSYS

The problem is then modelled with ANSYS. As the problem is symmetrical with two planes of

symmetry, it is possible to model only a quarter of the plate without changing the results obtained.

To do this, symmetric boundary conditions must be applied as shown in Figure 3 : the normal

displacement of the left and the bottom edge are blocked but not the tangential displacement.

Figure 3: Boundary conditions applied to a quarter plate

Instead of applying a force of 10 MN, a pressure of 250 MPa is applied to the right edge of the

plate, represented by a red arrow in the figure.

The focus is on the distribution of the stress in the plate. In the case of an axial load that causes

tension or compression, the average stress is given by the formula

σ =
Axial force F

Cross section area

Let’s consider the cross section that goes across the hole. The cross section area is then equal to :

area of the plate − area of the hole = 0.04× 1− 0.01× 1 = 0.03 m2. That leads to a calculated

average stress across the hole σacross hole = 10×106

0.03 = 333.33× 106 Pa.

Then, let’s consider the cross section of the right edge of the plate, on which the force is applied.

The cross section area is equal to 0.04 m2. That leads to a calculated average stress on the right
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edge of the plate σright edge = 10×106

0.04 = 250× 106 Pa.

After running the simulation for 4-node and 8-node elements and for a number of elements

per edge ranging from 1 to 128, the average stresses obtained with the software (let’s name them

σsoftware) are used to calculate the percentage error, displayed in the tables and on the graphs

in Figure 4. There are two different graphs depending on the cross section chosen : either across

the hole or on the right edge of the plate. The results printed are the percentage error, which is

calculated as follows : %error =
σcalculated−σsoftware

σcalculated
× 100, where σcalculated is equal to σacross hole

or σright edge depending on the case.

Figure 4: Graphs of the percentage error as a function of the number of elements per edge

For 8-node elements, the percentage of error decreases much faster as the number of elements

increases than for 4-node elements. Moreover, the percentage of error is less than 1% as soon as the

number of elements per edge is higher than 4 for all cases. Convergence in the mesh thus seems to

be quite fast, and it is preferable to choose elements with 8 nodes rather than 4 nodes.
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3.2 Stress concentration factor K

Now, let’s introduce the stress concentration factor K for static load, defined as the relation of

the actual maximum stress in the discontinuity and the average stress. It is given by the formula :

K =
Actual maximum stress

σcalculated

In order to choose the optimal number of elements for the simulations, let’s calculate K as a function

of the number of elements per edge with the software. As the maximum of stress is always close

to the hole, it is possible to calculate K by dividing this maximum by σacross hole. The results are

displayed in the table and on the graph in Figure 5.

Figure 5: Stress concentration factor K as a function of the number of elements per edge

The K factor seems to converge towards the value 2.48, and more rapidly for 8-node elements

than for 4-node elements. The simulation with 64 elements seems to give a satisfactory approxima-

tion of this result, as it seems that the asymptotic region of uniform convergence rate is reached

from 64 elements. Thus, in the following, the simulations with ANSYS will be done with 64 8-node

elements per edge.
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According to the theory of stress concentration factors [1], for an infinitely large plate, the

theoretical value of K should be 3. Now, still according to the theory, for a finite-width thin element

with a circular hole, the K factor varies as a function of the d/H ratio (with d the diameter of the

hole and H the width of the plate) according to the following equation :

K = 2 + 0.284

(
1− d

H

)
− 0.600

(
1− d

H

)2

+ 1.32

(
1− d

H

)3

Let’s try to reproduce this equation with the results obtained with ANSYS. For this, the simula-

tions are run for a d/H ratio varying between 0.05 and 0.5. For simplicity, between each simulation,

only the size of the hole is changed and the width of the plate is always equal to 0.04 m. The average

stress is then equal to force
cross section area where cross section area = area of the plate - area of the

hole. The results are displayed in the table and on the graph in Figure 6.

Figure 6: Graph comparing the simulated and theoretical K factors, as a function of the d/H ratio

According to the graph, the simulated K curve, whilst close to the theoretical curve, is quite

different at the two ends. After some research, it seems that the problem comes from the fact
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that in the theory the plate has an infinite length, which is not the case in this simulation. Let’s do

a sensitivity study with different length/width ratios in order to find the optimal length of the plate.

For simplicity, only the length is changed and not the width of the plate (always equal to

0.04m). The d/H ratio is left at 0.25, so the average stress will always be 333.33 MPa and the

theoretical K is 2.432375. The percentage of error is calculated for each value of L/H with the

formula %error = Ksimulated−Ktheoretical
Ktheoretical

× 100. The results are listed in Figure 7.

Figure 7: Percentage error of K depending on the length/width ratio

According to the graph, the % error is less than 0.2 for an L/H ratio greater than 2. In the

following, let’s see what the simulated K curve looks like for an L/H ratio of 2 and 2.5, which

corresponds to a plate length of respectively 0.08m and 0.1m.

The same simulations as for Figure 6 are run, and the results are displayed in the table below

and on the graph in Figure 8.
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Figure 8: Graph comparing the simulated and theoretical K factors, for three different L/H ratios

The higher the L/H ratio, the closer the simulated K curve is to the theoretical K curve. Thus,

with a length of 0.1m, the simulated K curve is much closer to the theoretical K curve than for a

length of 0.06m. There are still some problems at the ends of the curves, as the simulated curves

are no longer close to the theoretical curve. The problem will surely be solved if the plate has an

infinite length, which is not possible with the software.
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3.3 Improvement of the mesh

Several weeks after doing this study, and after gaining some experience with ANSYS, it seemed

worthwhile to revisit the study to understand why the simulated values did not exactly match the

theoretical values. This was facilitated by the use of the ANSYS APDL code.

After running the simulation for the same parameters as before to obtain the Figure 8, it appeared

that there was an error message concerning the shape of the elements for certain values of the d/H

ratio. Indeed, the mesh used was badly realized : for a too small radius of the hole (i.e. a small d/H

ratio, which corresponds to the left-end side of the curves), the elements were deformed, they did

not have a square shape anymore. Deformed elements can cause problems in the Jacobian matrix

during calculations, which can lead to bad simulation results. To verify that the problem was indeed

with the mesh, another improved mesh was made, as shown in Figure 9.

Figure 9: Comparison of two meshes : simple on the left and improved on the right

As seen in the figure, this new mesh is better than the previous one because the elements near

the hole keep their square shape. Furthermore, the diagonal of the mesh no longer runs through the

whole plate but only through a square whose dimensions remain the same in all simulations. Thus,

even when the length of the plate changes, the elements will not be deformed. This mesh has been

made with a spacing ratio of 0.1 for the two lines next to the hole and for the diagonal, so that the

length of the elements is smaller near the hole, which will give a better result.

With 64 elements per line with the new mesh, the simulations give the result shown in Figure 10.

This time, the simulated results are much more satisfactory : there are no more problems at the

ends of the curves and for a sufficiently large L/H ratio (i.e. a very long plate) the simulated curve

lies perfectly on the theoretical curve. This study highlights the importance of meshing, a step that

should not be neglected to obtain good simulated results.
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Figure 10: Graph comparing the simulated and theoretical K factors, with an improved mesh

To draw an interesting result from this study that could benefit practising engineers, let’s plot

a graph showing the error made in calculating the stress concentration factor K of a plate with a

hole using the theoretical curve, as a function of different L/H and d/H ratios. This is shown in

Figure 11.

This graph represents the percentage error between the simulated and theoretical K values, cal-

culated according to the following formula : %error = Ktheoretical−Ksimulated
Ktheoretical

.

For a length/width ratio greater than 2, the error is less than 1% for any diameter/width ratio,

so it is safe to use the theoretical K in these cases. However, for a L/H ratio of less than 2, the

error can range from 2% to 7%. As the simulated K values are higher than the theoretical ones

when the error is large (see Figure 10), it can be dangerous to use the theoretical solution as it will

lead to an underestimation of the true value of the stress concentration in the plate. Thus, it is not

advisable to use the theoretical formula when the error is too large, or else keep in mind that the

stress concentration is underestimated.
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Figure 11: Percentage error made in calculating the K factor with the theoretical solution, for a
plate with a hole

In this problem, a mesh convergence study was undertaken and this showed why it is important

in order to have valuable results. The average stress and the stress concentration factor K were

defined, and it was possible to compare the simulated K and the theoretical K. After seeing that

the result depended on the length of the plate, it was made clear that the simulated values of K were

closer to the theoretical ones when the L/H ratio was higher. This study showed how important it

is to verify a result by the theory, and how to find a solution when the results do not match.

4 Introduction to the Lamé equations on a cylinder

The following study was conducted to compare two elements : the conforming finite element

(CFE) which is used by the vast majority of commercial FE software nowadays, and the Lamé

finite element (LFE) which was developed by Angus Ramsay [2]. The study of examples, notably

of pressurised thick cylinders, will show why the LFE is interesting to use and sometimes even

preferable to the CFE.
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The Lamé finite element, as its name suggests, is based on the Lamé equations. Let’s consider a

uniform thickness axisymmetric body with a constant angular velocity ω, in a cylindrical coordinate

system r,θ. The material considered has a Young’s modulus E, a Poisson’s ratio ν and a mass density

ρ. The Lamé equations are then written :

σr = a− b

r2
− (3 + ν)

ρω2r2

8

σh = a+
b

r2
− (1 + 3ν)

ρω2r2

8

with σr the radial stress, σh the hoop stress, and a and b the two Lamé coefficients determined

from the boundary conditions.

4.1 First use of the LFE software

Now let’s use the LFE software, developed by Angus Ramsay, on a specific problem : the pressu-

rised thick cylinder. The cylinder considered has an inner radius ri = 0.1m, an outer radius ro = 1m

and an axial thickness t = 0.01m. The material considered has a Young’s modulus E=200GPa and

a Poisson’s ratio ν = 0.3. There are an internal pressure pi and an external pressure po applied on

the cylinder.

Let’s consider two load cases (LC1 and LC2) as defined in the tables below :

LC1
a (kPa) b (kN) fi (kN) fo (kN) pi (kPa) po (kPa)

100 0 -2π +20π -100 100

LC2
a (kPa) b (kN) fi (kN) fo (kN) pi (kPa) po (kPa)

0 100 +20π -2π 10000 -100

The simulation is done with ANSYS and the LFE software for 8 nodes. For ANSYS, an axisym-

metric shell is used and the bending part of the element is switched off. The results for each case

are displayed in Figure 12 and 13.

The elastic solution given by the LFE software is the exact solution, no matter how many nodes

are used. On the LC1 graph, it can be seen that the solution given by ANSYS for the radial stress

and the hoop stress is exactly equal to the LFE solution.

Then, on the LC2 graph, it can be seen that the solution given by ANSYS is far from the exact
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Figure 12: Radial and hoop stresses against the radius for pressurised thick cylinder, LC1

Figure 13: Radial and hoop stresses against the radius for pressurised thick cylinder, LC2
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solution for a small radius. However, it is important to note that the higher-order solution is closer

to the LFE solution than the lower-order solution, and if the number of nodes is increased then the

solutions given by ANSYS will be much closer to the exact solution than with only eight nodes.

An interesting property of the Lamé equations is that in the absence of body and thermal loading,

it can be verified that at any points σr + σh = 2a. That is particularly visible on the LC2 graph,

where a=0.

4.2 Mesh convergence study

Now, let’s verify the convergence of elastic stress and plastic load factor for LC2.

First, a mesh convergence study was conducted with ANSYS, using lower-order and higher-order

CFE, to check the convergence of elastic stress. The percentage error in stress has been calculated

at the inner radius, as this is where the stress is maximal. The results of that study are shown in

Figure 14.

Figure 14: Convergence of elastic stress for LC2

The study was not done using LFE, as the elastic solution given by the LFE software is exact

and does not depend on the number of elements (the percentage error is always equal to zero).

Furthermore, the percentage error for the higher-order elements decreases faster than for the lower-

order elements, and the error is less than 1% beyond 64 elements for the higher-order : a significant
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number of elements are required before having a satisfactory error percentage. In this example, it

is clear that LFE is preferable to CFE.

Then, a mesh convergence study was conducted to check the convergence of plastic load factor for

LC2. For this study, the ANSYS software and the LFE software were used, as the plastic solution

given by LFE is not exact. The results of that study are shown in Figure 15.

Figure 15: Convergence of plastic load factor for LC2 (von Mises criterion)

The exact value for the plastic collapse load is taken equal to 0.11601, it is the value obtained

for 2048 elements. The normalised plastic collapse load is then equal to the load factor for a given

number of elements, divided by 0.11601.

As seen on the graph, both the lower-order and the higher-order elements converge from below the

true values. It means that the CFE under predict the exact stress, which can be dangerous if an

engineer uses a coarse mesh and does not realise his mistake. However, the LFE converges from

above the true values, which means that it will over predict the exact stress. So, even with a coarse

mesh, the results will lead to a safe design. In this example, the LFE is also preferable to CFE.
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4.3 Thick-walled internally pressurised cylinder

In the rest of this study, a problem of dimensioning a thick-walled pressurised cylinder of inner

radius ri and outer radius ro is presented. The LFE software will be used in particular, but a com-

parison of this software with ANSYS will also be presented later. A limit to the Lamé equations

will be highlighted by this study, among other findings.

In structural engineering, there are different methods of dimensioning a part or an element of a

structure. One of them is the limit state design (LSD). In this method, the structure must satisfy

two criteria : the serviceability limit state (SLS) and the ultimate limit state (ULS). These two

criteria will be used in the following for our cylinder sizing study.

4.3.1 Design chart

In a thin-walled internally pressurised cylinder, it is assumed that the hoop stress is constant

across the thickness of the cylinder wall and that there are no radial stress. However, in a thick-

walled internally pressurised cylinder, the radial stress σr and the hoop stress σh vary through the

wall thickness and they are principal stresses as there are no shear stresses [3]. Those two stresses

are given by the Lamé equations as seen above. The difference between thick-walled and thin-walled

cylinders is shown in Figure 16.

Figure 16: Comparison of stresses in thin-walled and thick-walled cylinders, [3]

In order to know which theory to use between the thin-walled and the thick-walled theory, let’s

introduce the K factor which is equal to D/t, where D is the inside diameter and t is the thickness

of the cylinder. Since the maximum hoop stress is normally the limiting factor, it is this stress
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which will be considered [3]. The hoop stress from the two theories is plotted for various D/t ratio,

as well as the percentage error involved in using the thin cylinder theory, which is shown in Figure 17.

Figure 17: Comparison between thick-walled and thin-walled cylinder theory, [3]

As expected, the percentage error is maximal for a minimal factor K, since the smaller K is, the

greater is the thickness t of the cylinder. In the following, only thick-walled cylinders will be used.

Now, let’s introduce some quantities [4] :

- Sy is the uniaxial yield stress for the pipe material

- p is the pressure that causes yield up to some radius rp, ri ≤ rp ≤ ro, when using the Tresca

criterion : p = Sy ×
(

1
2r2o

(r2
o − r2

p)− ln( rirp )
)

- pe is the Elastic Limit Pressure, given by the p equation where rp = ri : pe = Sy×
(

1
2r2o

(r2
o − r2

i )
)

- pp is the Plastic Limit Pressure, given by the p equation where rp = ro : pp = Sy ×
(
−ln( riro )

)

To be able to work with a wide variety of cylinders, it can be interesting to introduce non-

dimensional quantities, so the equations and results found will be applicable to different geometries.

To that extent, let’s introduce the quantities as follow :

- the pressure load factor P =
pp
pe

, where P ≥ 1

- the radius ratio R = ri
ro

, where 0 < R < 1

- the material yield stress L = pe
Sy

24



- K =
pp
Sy

By introducing these quantities into the equations of pe and pp, R and P can be determined

respectively from the SLS condition and the ULS condition : R =
√

1− 2L and P = 2ln(R)
(R2−1) . Now,

let’s introduce the expression of R in the equation of P to have R and P as a function of L :

P = −ln(1−2L)
2L . Those equations for R and P are design equations. They were used, as well as the

LFE software, to plot the graph in Figure 18.

Figure 18: Design chart for internally pressurised pipes

The solid curves represent the theoretical values of R and P obtained with the Tresca criterion,

they were obtained from the design equations for L ranging from 0.01 to 0.4. For the other curves,

here is how they were obtained :

With a given Sy and a given L ranging from 0.01 to 0.4 pe can be deduced, which is equal to L×Sy.

Knowing the cross-section area A of the cylinder (A = 2πrit), the force F to be applied inside the

cylinder for each L can be deduced, since F = A× pe.
Now, using the LFE software, the force calculated as above is entered, ri is set to 0.1m and ro is

varied so as to have an elastic load factor equal to 1 to at least 5 decimal places. For this step, it

is possible to look for the outer radius by hand by section method, but the LFE software can also

do it and more quickly. After finding ro, R can be obtained, which is equal to ri/ro.
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Then, to find P, it can be stated that P = λp/λe where λp is the plastic load factor and λe is the

elastic load factor. Since λe = 1, then P is simply equal to λp, which is given by the LFE software.

These steps must then be repeated for each L and for the three different criteria, Tresca, von Mises

and Maximum Principal Stress, which can be easily changed with the software.

Note : The R values are obtained from an elastic LFE analysis (because the elastic load factor

was used). As the elastic result is exact regardless of the number of elements, a single element mesh

could have been used to obtain these results. However, the P values are obtained from a plastic LFE

analysis (because the plastic load factor was used). As the plastic solution is not exact, a refined

LFE mesh was required to obtain accurate values. Meshes with 128 uniform length elements have

been used here.

The values marked by triangles, circles and squares are the values of R and P obtained with

the LFE software with respectively the Tresca criterion, the von Mises criterion and the Maximum

Principal Stress criterion. As seen on the graph, the LFE Tresca values for R and P correspond

perfectly to the Tresca theoretical curves, which verifies the values given by the software.

For the von Mises criterion and the Maximum Principal Stress criterion, it was not easy to find a

theoretical solution : that is why the theoretical curves are not presented in this paper. However, a

trend curve was made with Excel for these two criteria, whose equations are displayed on the graph

along with the correlation coefficient.

According to the graph, it can be stated that for a given L, the Maximum Principal Stress criterion

will lead to a greater R value (i.e. a smaller wall thickness of pipe) than for the von Mises criterion,

which will lead to a greater R value than for the Tresca criterion. Likewise, for a given L, the

Maximum Principal Stress criterion will lead to a lower P value than for the von Mises criterion,

which will lead to a smaller P value than for the Tresca criterion.

It should also be noted that the graph stops at L=0.4. Indeed, the theoretical value of R and

P with the Tresca criterion does not allow to go beyond L=0.49 because of the properties of the

square root and the logarithm. Similarly, if the analysis with the LFE software is run for an L

greater than 0.4, the graph in Figure 19 is obtained.

When L is equal to 0.45, it can be seen that the LFE value of P starts to diverge from the

theoretical curve. The closer L gets to 0.5, the greater the gap between the theoretical and simulated

values. For R, however, the simulated values seem to follow the theoretical curve (the last R point
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Figure 19: Tresca curves for L greater than 0.4

at L=0.5 can’t be seen on the graph as it is hidden by the P point, but it has a value of 10−6). This

is due to the fact that P has been calculated with a plastic analysis, whereas R has been calculated

with an elastic analysis.

4.3.2 Comparison of three yield criteria

Now, let’s make a comparison of the three yield criteria. To do that, it is possible to plot each

yield criterion on a single graph, with the normalised radial stress as the abscissa and the normalised

hoop stress as the ordinate. This is shown in Figure 20.

The von Mises yield criterion is represented as an ellipse, the Tresca yield criterion is represented

as a polygon and the Maximum Principal Stress criterion is represented as a square. This graph is

particularly useful for determining whether a part is plastically deformed or remains in the elastic

range under a given load. This is done by displaying the normalized radial and hoop stresses (which

are the radial and hoop stresses divided by the yield stress) of the part on the graph. If the curve

representing the stresses remains within the geometric shape of a given criterion, then the part

remains elastic. However, if the curve goes on the geometric shape (partially or completely), then

the part becomes plastic (partially or completely).
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Figure 20: Three yield criteria on the same graph

The Tresca polygon being inscribed in the von Mises ellipse and in the Maximum Principal Stress

square, it means that the limit pressures for the von Mises criterion and the Maximum Principal

Stress criterion will be greater than or equal to those for Tresca.

Let’s now apply this to the thick-walled internally pressurised cylinder problem. The simula-

tion was run with the LFE software with 128 mesh elements, with an applied force of 106N, for a

constant inner radius of 0.1m and an outer radius varying from 0.100001m to 1m. This corresponds

to a variation of the ratio R from 0.1 to 0.99999. For each R, the simulations were run for the three

different criteria. Their elastic and plastic load factor has been recorded, resulting in the table below.

The elastic and plastic limit pressures are obtained by multiplying the applied pressure by the

elastic or plastic load factor. As the same pressure was applied for all these cases, then it is enough
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to compare the λe and the λp to compare the limit pressures between each criterion. As expected,

the limit pressures for the von Mises criterion and the Maximum Principal Stress criterion are

greater than or equal to those for Tresca, as the λe and λp are greater for those two criteria than

for Tresca. The prediction of the collapse load will then be different depending on the criterion

chosen, so use of an inappropriate yield criterion can, in general, lead to lack of economy or lack of

structural safety. The criterion to be used must then be chosen with care.

The graphical representation of these simulations is shown in Figure 21 for the Tresca criterion.

Similar results were obtained for the other two criteria.

Figure 21: Evolution of the normalised stresses as a function of the R ratio for the Tresca criterion

The yellow curves represent the elastic solutions whereas the red curves are for the plastic solu-

tions. The outer radius of the pipe is easily recognised as it lies on the line of zero radial stress and

first plasticity develops at the inner radius of the pipe.

As seen on the figure, the plastic solution is superimposed on the yield criterion from R=0.4 : the

cylinder becomes fully plastic for R=0.4 for the Tresca criterion. But for the von Mises criterion,

it becomes fully plastic for R=0.35 and for the Maximum Principle Stress criterion it is for R=0.5.

This shows that, as said before, care must be taken in choosing the criterion to be used because
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depending on whether Tresca, von Mises or Maximum Principle Stress is chosen, the conclusions

may be different for the same cylinder.

It may also be interesting to note that, for all three criteria, the curve of the elastic solution

makes an angle of 45 degrees with the x-axis for R=0.1. The bigger the R ratio is, the closer the

elastic and the plastic curves are to the point (0,1) : the radial stress tends to zero and the hoop

stress tends to 1 when R tends to 1. Furthermore, for a small R ratio, the hoop stress of the plastic

solution is negative near the inner radius.

Comparing the results obtained with ANSYS and the LFE software, they are identical for R=0.5

and R=0.9. However, for R=0.1, the results are quite different as seen in Figure 22 for the von Mises

criterion.

Figure 22: Comparison of the results obtained with ANSYS and the LFE software

For the plastic analysis with ANSYS, a force of 108 N was applied to the inner radius and a time

step of 10000 was used. In addition, the mesh was made with 128 higher-order elements.

As the results for R=0.5 and 0.9 are the same, this gives us some confidence in the results obtained

with the two software. However, for R=0.1, the difference in results could be explained by the fact
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that the LFE software was incorrectly calibrated.

Note : An improvement would be to have a file allowing to give the elastic modulus, or to change

the number of iterations of the LFE software which is for the moment maintained constant.

Another reason that could explain this difference between ANSYS and LFE is that in general

it is assumed that the elasticity is linear. But when the strain exceeds 1%, one has to be careful

because the elasticity can become non-linear. If the elasticity option is left on linear in ANSYS,

this can lead to bad results : this may be the case for R=0.1 here. To verify that, let’s focus on

the maximum percentage strain in the cylinder at the elastic limit load, depending on the R ratio.

After running the simulation on ANSYS with the same model as before and with 128 elements, the

results are shown in Figure 23.

Figure 23: Maximum percentage strain in the cylinder

As seen on the graph, the percentage scaled maximum strain in the cylinder is always less than

1% regardless of R. This means that it is a false lead : the difference between ANSYS and LFE

does not come from this issue.

In this study, the usefulness of the LFE software was shown in comparison to the ANSYS software,

which uses the CFE. The thick-walled cylinder problem was also addressed, highlighting the use

of the Lamé equations. By comparing three yield criteria for the same non-dimensional problem,

it was shown that the choice of the yield criterion was very important. In particular, the Tresca

criterion has a limit for calculating the parameter P when L is close to 0.5. Finally, when comparing

the stresses obtained with ANSYS and the LFE software, the results are the same except for R=0.1,

which seems to show a difference in behaviour between the two programs.
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5 Rotors

The following study will focus on rotors and will use the Lamé equations introduced earlier. It

is largely based on Vullo and Vivio’s book [5] and reproduces many examples of it.

5.1 Rotating annular disk

First, let’s focus on the hoop and radial stresses of a rotating disc of constant thickness, only

subjected to centrifugal loading. The disc has the outer radius re and the inner radius ri, it rotates

at the angular velocity ω and it is made of a material of density γ, of Young’s modulus E and of

Poisson’s ratio ν = 0.3.

To have a more general model, let’s introduce the dimensionless parameters :

- β = ri
re

- ρ = r
re

as well as the variable σ0 = γ ω2 r2
e .

After calculations not detailed here, the general solutions below are obtained for the radial stress

σr, the hoop stress σt and the displacement u :

The hoop stress decreases continuously from the inner radius to the outer radius, it is maximum

at the inner radius and minimum at the outer radius. The minimum and maximum values of the

hoop stress are given by the following formula :

where the plus sign applies for the inner radius and the minus sign for the outer radius.
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To check that the same thing is obtained by simulation, the LFE software was used to draw the

Figure 24.

Figure 24: Distribution curves of dimensionless stresses σt,max/σ0 and σt,min/σ0 as a function of
β2, for ν = 0.3

The dimensionless stresses σt,max/σ0 and σt,min/σ0 were plotted on the graph as a function of

the dimensionless parameter β2 = (ri/re)
2. The simulation was done for a density of 7500 kg/m3

and an angular velocity of 6.28 s−1. It can be seen that the simulated values are in perfect agree-

ment with the theoretical values obtained from the previous formula, which makes it possible to

verify the results obtained by the simulation.

After focusing only on the hoop stress, let’s now focus on the hoop and the radial stress as a

function of ρ = r/re. For that, let’s use the theoretical solution for σr and σt as seen above. More

precisely, let’s use the expression in parentheses in those theoretical formula, by introducing the

new variables σ̃r = 8
(3+ν)

σr
σ0

and σ̃t = 8
(3+ν)

σt
σ0

. If the constant factor σ0(3 + ν)/8 is not considered,

these variables are therefore equivalent to σr and σt.

The simulation was done with the LFE software for different values of β = ri/re (0.25, 0.5 and

0.75), the results are shown in Figure 25.

The blue curves are the simulated results and the orange curves are the theoretical results. As

seen on the graph, in this case the theoretical and simulated results also match perfectly which is

reassuring.

33



Figure 25: Distribution curves of dimensionless stresses σ̃r and σ̃t versus dimensionless radius, for
different values of β

5.2 Three-part rotor only subjected to centrifugal loading

For this example, let’s consider the following rotor :
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It consists of three parts (a constant thickness disk, a hub and a crown ring) where the different

radius are rm = 0.05 m, ri = 0.09 m, re = 0.26 m and rc = 0.3 m and where the different thi-

ckness are a = 0.1 m, h = 0.020 m and b = 0.13 m. The rotor is made of a material of density

γ = 7800 kg/m3, of Young’s modulus E=210 GPa and of Poisson’s ratio ν = 0.3, and has an

angular velocity of ω = 2π × 6000/60 ≈ 628 s−1.

After calculations not detailed here, the hoop and radial stresses in the disk of thickness h are

given by :

Once again, let’s compare these results to simulated ones using the LFE software. This is shown

in Figure 26.

Figure 26: Distribution curves of stresses σr and σt versus dimensionless radius in the rotor

As seen on the graph, the stresses were plotted against the dimensionless radius ρ = r/re. For the

disk of thickness h for which the theoretical solution is known, it can be seen that the theoretical

curves (in green and yellow) and the simulated curves (in blue and orange) overlap perfectly for ρ

between 0.35 and 1. Two steps can be seen in the stresses : this corresponds to the sudden change

in thickness of the rotor.
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A quick test to check that there are no errors in the simulation is to plot the radial force and the

displacement along the radius, as seen in Figure 27.

Figure 27: Radial force and displacement along the radius in the rotor

It can be seen that the radial force and the displacement are continuous along the radius of the

rotor. This is a condition that must be met for the results to be valid, so there is no problem here.

5.3 Three-part rotor subjected to centrifugal loading and surface forces

Let’s take the same rotor as before, but this time adding surface forces of -10 MPa and 40 MPa

applied to hub radius rm and crown ring radius rc respectively. After calculations, the theoretical

hoop and radial stresses in the disk of thickness h are given by :

With the LFE software, a force F1 was applied to the hub radius rm where F1 = pressure×area =

10 × 106 × 2π × 0.05 × 0.13 ≈ 408 kN . A force F2 was also applied to the crown ring radius rc

where F2 = 40× 106× 2π× 0.3× 0.1 ≈ 7.54 MN . All other parameters are taken as in the previous

example. The results are shown in Figure 28.

As seen on the graph, the theoretical curves (green and yellow) and the simulated curves (blue

and orange) are very different for ρ between 0.35 and 1. This can be for two different reasons :

either the theoretical solution is wrong, or the simulated solution is wrong. Since the LFE software

always gave the right result so far, it is not unlikely that an error occurred in the calculation of
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Figure 28: Distribution curves of stresses σr and σt versus dimensionless radius in the rotor

the theoretical formula for the hoop and the radial stresses. To check this, let’s redo the simulation

with another software to see what result is obtained.

For the new simulation, let’s use ANSYS. Unlike the LFE software, the result given by ANSYS

is not exact and there is therefore a need to conduct a mesh convergence study. To do this, let’s

redo the previous study of a three-part rotor only subjected to centrifugal loading for which the

theoretical solution is known and agrees with the LFE simulation. This is shown in Figure 29.

The graph shows the percentage error between the simulated stress and the theoretical stress at

the radius 0.09 versus the number of elements, where the percentage error is calculated according

to the formula : %error = σsimulated−σtheoretical
σtheoretical

× 100.

The rate of convergence for the radial stress is also plotted on the figure. Let’s call σe|m the per-

centage error calculated for the number of elements 2m. The rate of convergence q is then given by

the formula : q = log(σe|m+1/σe|m)
log(1/2) .

As seen on the graph, the error is less than 1% for both hoop stress and radial stress for a number

of elements greater than 64. To do the next study with ANSYS, it will then be sufficient to use a

mesh of 64 elements.
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Figure 29: Mesh convergence study for the example of a rotor only subjected to centrifugal loading

The analysis with ANSYS was done with the same parameters as for the LFE analysis, and the

results are shown in Figure 30.

Figure 30: Distribution curves of stresses σr and σt simulated with ANSYS

The results obtained with ANSYS and LFE are exactly the same, but this is not very visible

on the graph as the curves overlap perfectly. Thus, the simulation done with ANSYS validates the

results obtained with the LFE software and it would seem that there is an error in the theoretical
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formula for the hoop and radial stress in [5].

To evaluate the influence of the central disk’s thickness h on its stress state, the book [5] offers a

comparative study with three different values of h (0.020 m, 0.040 m and 0.080 m). As the theoretical

formula is wrong for the stresses, the book’s study is also wrong. That is why it has been redone

with the LFE software, and the correct results are shown in Figure 31.

Figure 31: Distribution curves of stresses σr and σt versus dimensionless radius for different thi-
cknesses h

As seen on the graph, h has a great impact on the stress state but also on the concavity of the

curves. For the radial stress for ρ between 0.35 and 1, for example, the curve is convex for h=0.08

and concave for h=0.02, the opposite is true for hoop stress. For h=0.08, the hoop stress is always

higher than the radial stress whereas for h=0.02 this is not always the case.

5.4 Annular disk assembled on a solid shaft with a shrink-fit

Let’s consider an annular steel disk which is assembled on a solid shaft with a shrink-fit, as seen

below.
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The annular disk and the shaft are made of steel (γ = 7.8×103 kg/m3, E=200 GPa and ν = 0.3).

The disk is of constant thickness h=75 mm, of inside diameter 2ri = 0.1 m and of outside diameter

2re = 0.5 m. The shrink-fit generates a contact pressure pc = 100 MPa at the disk/shaft interface

when there is no angular velocity and when the assembly temperature is equal to the ambient

temperature.

According to the theory, a contact pressure pc generates a radial displacement ud of the interface

at the radius ri of the disk and a radial displacement ua at the radius ri of the shaft. This results

in a radial interference i = ud − ua = 52.1 µm.

The problem is then modelled with the LFE software. For now, the angular velocity is kept at

zero. In order to have a contact pressure pc at the interface, let’s use the equation : ∆r = r×α×∆T ,

where ∆r is the change in radius and is equal to i, r is the interface radius and is equal to ri, α is

the coefficient of expansion and is taken equal to 1 and ∆T is the change in temperature. So, to

have a pressure pc at the interface, and if the temperature of the disc is 0, then a temperature of

∆r
r×α = i

ri
= 52.1×10−3

50 = 0.001042 must be applied to the shaft.

Then, the speed of the rotor is varied from 0 to 716 rad/s, value for which the contact pressure

is theoretically zero. Let’s call σt,p the maximum hoop stress due to contact pressure, σt,ω the

maximum hoop stress due to rotation only and σt the maximum total hoop stress at the disk’s

inner radius. These three quantities are a function a ω2, they are represented in Figure 32.

Figure 32: Different stresses (σt, σt,ω and σt,p) versus ω2 in a shrink-fit shaft/disk assembly
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As seen on the graph, the simulated curves are exactly the same as the theoretical ones except

for σt,p which is quite different on one end. The reason for this difference is not yet known.

5.5 Constant thickness disk with radial slots

This short study will mainly allow to better master ANSYS on a more complex model than

all the previous ones. Let’s consider a constant thickness disk with peripheral radial slots, whose

geometry is shown below.

The radii of the disk as seen on the drawing are known : ri = 100 mm, re = 400 mm and

R = 660 mm. The rotor is made of a material of density ρ = 7800 kg/m3, of Young’s modulus

E = 210GPa and of Poisson’s ratio ν = 0.3. It is only subjected to an angular velocity of 188.5 s−1.

The problem is circularly symmetrical, and for simplicity it will be assumed that all rotor sections

are of the same size. With ANSYS, only one section will then be modelled, as seen on Figure 33.

Figure 33: Modeling a disk with radial slots with ANSYS

The lines seen on the section separate different areas. It was necessary to create this area partition
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so that each area is formed of exactly 4 lines : this will allow to have a good mesh with quadrilaterals

rather than triangles, as they allow to have a more precise result. In particular, it is the geometry

close to the 2 corners of the slot that determined the area partition. Indeed, this is where there

will be a concentration of stress and it is therefore necessary to have a refined mesh so that the

simulated result is close to the theory. One of the solutions is to create a square around each corner,

so it will be possible to refine the mesh as desired. The optimised mesh is shown in Figure 34.

Figure 34: Optimised mesh of an angle of a slot

In addition, as can be seen in the figure, the angle is rounded : it was necessary to create a line

fillet. Indeed, if we leave an angle of 90°, it will generate a singularity : the more the mesh is refined,

the more the stress will increase to infinity. This is due to the fact that the theoretical solution

can’t take into account the stress at sharp angles. The difference in geometry between a 90° angle

and a line fillet is shown in Figure 35.
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Figure 35: Comparison of two geometries of an angle of a slot

Then, a mesh convergence study was carried out on a model with line fillet and on a model with

90° angles to see the effect of a singularity. The maximum stress of the angle versus the number of

elements per line is shown in Figure 36.

Figure 36: Mesh convergence study to show the effect of a singularity

As can be seen on the figure, as the number of elements increases, the stress increases a lot for

the 90° angle model. For the line fillet model, on the other hand, the stress converges to a certain

value as the number of elements increases. Here, it can be seen how important it is to make a line

fillet to avoid singularities.

This study allowed to learn how to better use ANSYS on a complex case to model, unlike the other

models where they are all very simple (just a plate or a beam). It also helped to learn how to make

a nice mesh, that’s usually the most time consuming. Also, it was seen the problem of singularities,

43



which occurs when there are right angles in the model. This can lead to misinterpretation if the

stress increases despite a refined mesh. A good solution to this is to use a line fillet.

6 Commercial project

For the last project of the internship, I was able to work on a commercial project to verify

that a balustrade complies with certain European standards. To do this, I first carried out a study

on a simple model of the balustrade, in order to choose which ANSYS element to use next. The

balustrade is thus modelled by a simply supported rectangular plate under UDL.

6.1 Simply Supported Rectangular Plate under UDL

In this technical note, a code verification study will be conducted on three different shell elements

of the ANSYS software. The model used for this study will be a simply supported rectangular plate

under uniformly distributed load, as the theoretical solution for this example is known.

6.1.1 Theoretical solution

The theoretical Navier plate solution will be used here. This solution is an infinite series that

converges as the number of terms in the series is increased. A number of terms equal to 250 can

be considered sufficient for the solution to be close to the exact solution. This number was chosen

after a study on the convergence of the Navier plate solution [6].

To do the code verification, two quantities obtained with ANSYS will be compared to the theoretical

solution : the principal moments M1 and M2. The theoretical values for these quantities are given

by the formula below [7] :

M1 =
Mx +My

2
+

√(
Mx −My

2

)2

+M2
xy

M2 =
Mx +My

2
−

√(
Mx −My

2

)2

+M2
xy
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where
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and where D is the flexural rigidity of the plate (D = Eh3

12(1−ν2) with h the thickness of the plate), A

is the length of the plate, B is the width of the plate and q is the uniformly distributed load applied

on the plate. Let’s just look at the solution in the center of the plate : x and y will then be taken

equal to A/2 and B/2 respectively.

6.1.2 Simulation with ANSYS

The plate considered here is made of aluminium (E=70 GPa, ν = 0.3 and density ρ = 2700 kg/m3)

and has the following dimensions : length A=3.27 m, width B=1.519 m and thickness h=0.002 m.

A UDL q of 1 kPa is applied on the plate, the simulation is then run in ANSYS with the elements

SHELL181, SHELL281 and SHELL63. The SHELL63 element, unlike the other two, does not take

into account the shear deformation. As the problem is symmetrical with two planes of symmetry,

it is possible to model only a quarter of the plate without changing the results obtained. To do

this, symmetric boundary conditions must be applied : the normal displacement of the left and the

bottom edge are blocked but not the tangential displacement. The normal and tangential rotation

of these edges must also be blocked. The results are shown in Figure 37.

For clarity, only the results for M1 have been plotted but similar results are obtained for M2.

It was not possible to simulate a larger number of elements than those presented here because the

student version of ANSYS is limited in the number of elements.

The graphs show the percentage error between the simulated moment M1 and the theoretical mo-

ment in the center of the plate versus the number of elements per edge. The percentage error is
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Figure 37: Percentage error and rate of convergence versus number of elements per edge for three
different shell elements in ANSYS

calculated according to the formula : %error = Msimulated−Mtheoretical

Mtheoretical
× 100.

The rate of convergence is also plotted on the figure. Let’s call Me|m the percentage error calcu-

lated for the number of elements 2m. The rate of convergence q is then given by the formula :

q = log(Me|m+1/Me|m)
log(1/2) .

As seen on the graph, the error is less than 1% for a number of elements greater than around 8

for SHELL181 and greater than 4 for SHELL281. However, the convergence is very poor for these

elements as the percentage error starts to increase when the number of elements exceeds a certain

value (beyond 64 elements for SHELL181 and beyond 32 elements for SHELL281). On the other

hand for the element SHELL63, there seems to be a good convergence as the percentage error

always decreases as the number of elements increases. It takes around 8 elements per edge to get a

percentage error below 1% with this element.

Furthermore, for all three elements, the rate of convergence does not seem to converge to a value, as

it is supposed to do normally. It is a bit better for the element SHELL63, whose rate of convergence

seems to remain around 2.

6.1.3 Closure

In this short study, it was seen that the elements SHELL181 and SHELL281 do not seem to be

very good for modelling a simply supported rectangular plate under UDL. Even if the convergence

is quite fast, the percentage error increases again beyond a certain number of elements, which is

not normal. Being restricted by the student version of ANSYS, it was not possible to see how the

convergence is for a larger number of elements. But it is likely that the percentage error continues

to increase for a larger number of elements and it may even exceed 1%.
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On the other hand, the element SHELL63 seems to be a rather good choice for modelling this case,

but this element is not in the default settings of ANSYS. Given these worrying results, one may

wonder whether the software can really be trusted. Knowing this, extra care should be taken for

futur projects using these elements.

In the following, the element SHELL281 will be used. Indeed, even if it is not ideal, the convergence

is nevertheless satisfactory because the error is lower than 1%.

6.2 Balustrade

Let’s now focus on the balustrade, which is made of corrugated plates. The aim will be to verify

that the balustrade, the model of which has been provided by ESK Balustrade systems limited,

complies with the European construction standards, Eurocode 9.

6.2.1 Model of the balustrade

The balustrade is made of 1050 aluminium sheet of Young’s modulus E=70 GPa, of Poisson’s

ratio ν = 0.3 and of density ρ = 2700 kg/m3. The yield stress Sy can be as low as 85 MPa for this

material. Let’s use this minimum value for future calculations to have a safety margin.

The balustrade is 2.998 m long, 1.500 m wide and 0.002 m thick. To comply with the SLS condition,

the European standard says that it must be able to withstand a UDL of 1 kPa or a point load of 125

N. It should be checked that the maximum displacement is less than 25 mm and that the maximum

stress does not exceed the yield stress of 85 MPa.

As the balustrade is doubly symmetrical, it is possible to model only a quarter of it in ANSYS.

The point load applied will then be a quarter of 125 N. The study will be done with SHELL281,

with 32 elements per edge, and the large displacement option will be switch on.

6.2.2 Modelling with ANSYS

The simulation was first carried out on a simple model of a flat plate to get an idea of the

results obtained. with the same dimensions as seen above. The simulation was then run with the

real model with the corrugated plates, and the results for both models are shown in the table below.
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The utilisation is calculated by dividing the maximum moment by the yield moment My, where

the yield moment is given by My = Sy × t2/6 with t the thickness. The utility should be less than

1 for the SLS condition to be met. The von Mises criterion was used here for the calculation.

As seen in the table, the SLS condition is not fulfilled for the flat plate with the area load, as

the deflection exceeds 25 mm, and the utilisation exceeds 1. However, the corrugations make the

plate stiffer which allows the plate to meet the SLS condition. For the point load, both plates

meet the SLS condition, even though the corrugated plate deforms less than the flat plate. The

model provided by the company therefore appears to comply with European standards for the SLS

condition.

6.2.3 Boundary conditions

A criterion to be considered in designing the balustrade is the choice of the boundary conditions.

Indeed, the plates in the simulation above are simply supported, but they can also be clamped,

with no pull in and clamped with no pull in. The study below was conducted to see the influence of

the different boundary conditions. It was done on the flat plate and on the corrugated plate, with

the point load and the area load.

For a plate, the normal displacement on each side must be blocked to have a simply supported plate.

In order to have a clamped plate, the plate must be simply supported and in addition the rotation

parallel to the normal direction sides and the rotation parallel to the tangential direction sides must

be blocked. To stop pull in, the plate must be simply supported and in addition the translation

normal to the normal direction sides and the translation normal to the tangential direction sides

must be blocked. The results are shown in Figure 38.

As seen on the graphs, the clamped and no pull in boundary conditions allows to have the lowest

deflection for the same load applied. This should therefore be taken into account in the design of

balustrades and plates in general, so that the deflection is as small as possible.

As the first simulation was done with a simply supported plate, it seems that choosing another
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Figure 38: Maximum transverse deflection of plates with different boundary conditions

boundary condition will necessarily reduce the deflection of the balustrade. Thus, the European

standards will still be met by this balustrade design. However, the report could not be finished

before the internship ended.

7 Conclusion

During the three months of my internship, I was able to carry out five different projects which

all taught me a lot.

With the beam project, I learned to verify the results given by ANSYS knowing the theoretical

solution. I was also able to make a comparative study of the beam elements in ANSYS, to see which

is the best choice depending on the applied load.

With the project of the plate with a hole, I was able to see the error of a bad mesh compared to a
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good one, and thus understand the interest of spending time on the mesh during a modeling.

For the third study on the cylinder, the most interesting thing was to see that the elements used

by ANSYS are not necessarily optimal in all situations. Indeed, Angus Ramsay has developed a

new element, the Lamé Finite Element, which gives much more satisfactory results than those of

ANSYS for the cylinder. It was very interesting to question what all engineers use, and not just

apply what is already provided to us.

For the penultimate study on rotors, it was by reproducing some examples from a book that I was

able to find an error in one of them. This taught me that errors are not impossible even in published

books, and that one should not trust blindly but rather check the results by oneself when possible.

Finally, the commercial project was the most interesting for me because it allowed me to work on a

concrete case provided by real clients. Even if I could not complete this project, the things I learned

from it were very enriching.
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