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Abstract — This paper concerns the verification, validation, and performance of a hybrid equilibrium 

flat shell quadrilateral element for linear elastic analyses. A benchmark plate bending problem and a 

folded plate problem are modelled using equilibrium and conforming elements for comparison. In   

models of the latter problem, torsional moments are released along fold lines, and the effects of this 

assumption are studied by analysing a model composed of solid brick elements. A 1D hybrid 

equilibrium element is proposed to simplify the modelling of folded or stiffened plates. 

Key-words  — strong equilibrium, flat shell elements, folded plates. 

1 Introduction  

      Equilibrium elements for modeling the membrane and bending behaviours of thin plates 

were formulated in the 1960’s and 70’s by, for example, Fraeijs de Veubeke et al [1-3]. Potential 

problems due to spurious kinematic modes were avoided generally by using the concept of 

macro-elements, for example quadrilateral elements were formed by assembling four triangular 

elements with sides aligned with the diagonals of the quadrilateral, although this was realized to 

be unnecessary in the case of plate bending governed by Kirchhoff theory. In the 1990’s Almeida 

and Freitas [4] proposed a general hybrid formulation for equilibrium elements.  The inherent 

stability of quadrilateral plate macro-elements was recognized by Maunder et al [5] in the 

context of this type of hybrid formulation. Equilibrium models have been used in error analysis, 

by exploiting dual analyses, and in design, by appealing to the lower bound theory of plasticity: 

moreover, they may offer numerical benefits, such as freedom from locking etc.. 

     However, to the authors’ knowledge, these types of element have not been combined into flat 

shell elements in order to model folded plates. In this paper, the term folded plate will be used to 

mean that complete continuity exists in the 3D continuum sense where non-coplanar plates are 

connected. However, thin plates governed by Reissner-Mindlin theory will be assumed with flat 

shell elements without recourse to using drilling freedoms [6] or couple-stresses [7]. The hybrid 

equilibrium flat shell element has 6 rigid body kinematic freedoms for each side, but torsional 

moments cannot be codiffusive along a fold without invoking couple-stresses. A simpler way to 

model such connections, and maintain codiffusive tractions, is to release the torsional moments 

along a fold. 

     This paper is only concerned with linear elastic behaviour. It should be noted that although 

the computations have been carried out using the non-linear software ADAPTIC developed by 

the second author [8], loads have been specified at a low value so that non-linear effects can be 

neglected. The outline of the paper is as follows. It continues in Section 2 with a summary of a 

formulation of hybrid equilibrium elements. Section 3 provides evidence to verify the 

formulation, and to indicate performance characteristics in a plate bending benchmark problem. 

In Section 4 a folded plate problem is considered and results are compared with those from 

conforming models based on plate elements or solid hexahedral elements. Proposals are 

presented in Section 5 for a general 1D hybrid equilibrium element to provide a simpler way to 
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model the complete interactions between non-coplanar equilibrium flat shell elements.  Section 

6 forms the closure of the paper. 

2 Formulation of a hybrid equilibrium quadrilateral element 

The aim of a hybrid equilibrium finite element model is to produce a strong form of equilibrium by 

connecting statically admissible internal fields of stress-resultants within elements in a codiffusive 

way. Following [4], this is achieved by the use of boundary displacement fields defined independently 

for each side of an element, resulting in potentially non-codiffusive tractions being zeroed as a 

consequence of doing zero work with the side displacements. 

Stress and displacement fields are represented in Equation (1). 

psS σσσσσσσσ +⋅= ,  and  vV ⋅=δδδδ                                                             (1) 

S and V represent bases for stress-resultants and boundary displacements with parameters s and v 

respectively. σσσσp represents a particular field of stress-resultants which equilibrates with load 

distributed over the surface of an element. The parameters v represent modes of side displacement for 

all sides of an element, and the modes are based on complete Legendre polynomials up to a degree 

which is the same as the degree of the corresponding stress-resultants.  

Dual modes of side traction correspond to resultant forces and/or moments and self-balancing 

modes of traction. The distributions of traction which equilibrate with S.s are denoted by t, and these 

are related to the stress parameters and traction modes g as in Equation (2).  

∫ ⋅⋅=⋅=

ΓΓΓΓ

ΓΓΓΓdtVgsSt
T

  and                                                          (2) 

Weak compatibility conditions between internal strains and side displacements are expressed by 

Equations (3). 

∫∫ ⋅⋅=⋅⋅

ΓΓΓΓΩΩΩΩ

ΓΓΓΓΩΩΩΩ dSdS
TT δε or vDesF T

p ⋅=+⋅                              (3) 

where ∫∫∫ ⋅⋅=⋅⋅⋅=⋅⋅⋅=

ΓΓΓΓΩΩΩΩΩΩΩΩ

ΓΓΓΓΩΩΩΩΩΩΩΩ dVSDdCSedSCSF
TT

p
T

p
T

  and  ,  , σ , and C denotes the 

compliance matrix in σσσσεεεε ⋅= C . 

If applied tractions t  and tractions tp, which equilibrate with the particular stress-field σσσσp, are 

polynomials of degree less than or equal to the degree of the side displacements, then strong 

equilibrium between side tractions and internal stress fields is enforced by: 

       sDgdtVdtV p
TT ⋅==⋅⋅−⋅⋅ ∫∫    

ΓΓΓΓΓΓΓΓ

ΓΓΓΓΓΓΓΓ                                                                 (4) 

The stiffness matrix K of an element is formed by elimination of s from Equations (3) and (4), so 

that: 

         peFDgvK 1−⋅+=⋅  where  TDFDK ⋅⋅= −1                                        (5) 

The results reported in this paper are due to quadrilateral elements with internal stress-resultants 

composed of piecewise linear fields of membrane forces and transverse shear forces, together with 

piecewise quadratic moment fields. Displacement fields are described with reference to the 

displacements (u,v,w) along the directrix, and the rotations (ϕn,ϕs) of the rulings on the rectangular 

surface formed by a side of an element. These are illustrated in Figure 1. 
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FIG. 1: Surface displacements and deformations of a side. 

    Codiffusive tractions are ensured by using complete linear displacement and quadratic rotation 

fields. Thus there are defined 6 rigid body modes plus 6 deformational modes comprising one uniform 

tensile strain εs, rotations ϕs of degrees 1 and 2, rotations ϕn of degrees 0, 1, and 2. The total number of 

kinematic degrees of freedom is then given by nv = 4×12 = 48. The number of independent fields of 

stress-resultants is given by ns = 7 + 17 = 24 [9], and thus there would exist (24 – 6) = 18 spurious 

kinematic modes. As originally proposed by the Liege school [2,3], such modes can be effectively 

blocked by combining 4 triangular hybrid elements into a quadrilateral. For the displacements under 

consideration, this combination must be based on the internal sides being aligned to form the 

diagonals of the quadrilateral. As noted [5,10], this condition on alignments is not required for higher 

degree quadrilateral elements. Internal freedoms are condensed out, leading to a 48×48 element 

stiffness matrix, and further details can be seen in Maunder & Izzuddin [11]. 

3 Performance in a benchmark problem 

 A benchmark problem for plate bending behaviour is selected and comparisons made with 

theoretical solutions or solutions from conforming finite elements. A square soft simply supported 

plate is considered with 8m side length, 0.25m thickness, E = 2.1e8 kN/m
2
 , and ν = 0.3. A uniformly 

distributed load of 1e-6 kN/m
2
 is applied to the plate, and one quadrant is modelled with a sequence of 

uniform meshes. The initial mesh consists of a single element, this is then refined to a 64×64 mesh. 

This problem leads to local large gradients of stress resultants, but there are no singularities [12]. 

Figures 2a and 2b contain contour plots from the finest mesh. These are similar to those from a 

conforming model using the same mesh of 9-noded Lagrange elements, and so this is taken as a 

reference solution. 

 

 

 

 

 

 

 

 

                                          Mxy kNm/m contours                    Qxz kN/m positive contours  

FIG. 2a: “reference” solution from 64x64 uniform mesh of hybrid equilibrium plate elements of 

moment degree 2, or 9-noded conforming elements of degree 2. 
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FIG. 2b: Qxz negative contours in a boundary layer where the shear force is concentrated. 

The convergence of strain energy and the extreme values of transverse shear stress resultants 

are compared for the equilibrium and conforming models in Figure 3.  

 

 

 

 

 

 

 

FIG. 3: Convergence of (i) strain energy kNm (×1015) for a quadrant, (ii) shear force kN/m (×106) 

- minimum shear Qxz on side AB, and shear Qxz at C. 

It is noted that, for these quadratic elements, convergence may be considered to have occurred, for 

practical purposes, when the element size is equal to its thickness. The corresponding mesh is 16x16, 

and the numbers of dof are then 4352 (log 4352 = 3.639) and 3267 (log 3267 = 3.514) for the 

equilibrium and conforming models respectively. The relative difference in energies for the finest 

mesh is 1 part in 10
5
. It may be concluded that the quadratic equilibrium element provides solutions of 

comparable quality to that from the 9-noded Lagrange conforming element for this benchmark 

problem. However, the strain energies provide, as expected, upper and lower bounds to the exact strain 

energy. Hence complementary use of both models should provide an effective error estimator. 

4 Study of a folded plate problem 

A folded plate is shown in Figure 4, where each plate is 4m square with thickness 0.25m, E = 2.1e8 

kN/m
2
, and ν = 0.3. The fold angle along BE is 90º. Soft simple supports are assumed along sides AB 

and BC, and a uniform line load W = 40e-6 kN/m is applied in the direction of BA along the 0.5m 

length of side adjacent to F. Each of the plates is initially modelled by a uniform mesh of 8×8 square 

flat shell elements that combine both membrane and plate bending fields.  

     Along a fold where two non-planar elements are connected, all tractions can be made 

codiffusive with the exception of the torsional moments. In order to ensure that a model is 

completely in equilibrium in terms of stress-resultants, the torsional moments are released 

along a fold. From the kinematic point of view, the corresponding drilling rotations of the 

normals are unconstrained, at least where 2 plates are involved. For connections between 3 or 

more plates, the rotations would be coupled with 2 degrees of freedom. 
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FIG. 4: Initial mesh of the folded plate and its deformed shape 

A physical model can be defined using a biological analogy with a spinal column articulated with a 

central cord connecting a set of vertebrae (segments) which can allow independent degrees of 

movement. This is illustrated in Figure 5. 

 

 

 

 

 

 

 

 

FIG 5: Articulation to free the transference of drilling components of rotation ϕz. 

     The rotation Φ of the segment is resolved into components ϕni and ϕzi to correspond to the 

rotations of the rulings in side i so that the component ϕni is transferred, but the component ϕzi is 

not transferred – the ruling is attached to the vertebra by a cylindrical type of bearing which 
allows free rotation of ϕzi within the vertebra. 

     In this way the rotations ϕni are not generally independent, but are dependent on the 2 

degrees of freedom associated with the rotation vector Φ of a vertebra. Note that if only two 
elements are connected along a spine, then rotation components ϕn1 and ϕn2 are generally 

independent and free unless the elements are coplanar. In that case ϕn1 = ϕn2 = Φ. 

     The conforming flat shell element generally has 3 translational dof per node but only 2 

rotational dof when the drilling freedom is ignored. Only nodes common to non-planar elements 

account for 3 rotational dof since rotations about an axis normal to the fold axis can be resisted 

by moments in at least one of the elements. However, rotational equilibrium of nodes on the fold 

axis requires zero nodal moments to be transferred about an axis normal to the fold from either 

of the two plates. Thus in a discrete sense, nodal torsional moments are released, and in the limit 

as a mesh is refined, the distributions of torsional moments along the fold axis tend to zero. The 

two models using the equilibrium and conforming models again tend to the same solution as the 

mesh is refined, and this is illustrated for strain energy in Figure 6. The relative difference in 

energies for the finest mesh is 1 part in 3,000. 
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FIG. 6:  Convergence of strain energies – kNm (×1014) 

  

 

 

 

 

 

 

                

 

FIG. 7: Mxy kNm/m (×107) at centre cross-section GH in FIG. 4 

     The two points in Figure 7 denoted by      represent values of torsional moment derived from 

the solid FE model at the intersections of the plates with the spine zone. The dashed line in 

Figure 7 represents the uniform intensity of torsional moment corresponding to the use of Saint 

Venant theory for torsion of a thin walled section assuming unrestrained warping. The reference 

lines correspond to distances from the ends of the section equal to 0.25m, i.e. the thickness of 

the plate. The reference lines adjacent to the fold line correspond to the interfaces of the plates 

with the spine. 
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FIG. 8: Qxz kN/m (×107) at centre cross-section GH in FIG. 4 

     As shown in Figures 7 to 9, the solutions for Mxy and Qxz adjacent to the fold line indicate 

boundary layers similar to those obtained adjacent to soft simple supports. These quantities 

have high local gradients within a width of plate generally less than the plate thickness, or 

approximately within the intersection subdomain of the two plates when considered as a solid 

in 3D space. 

 

 

 

 

 

 

 

 

 

 

 

FIG. 9: contour plot of Mxy kNm/m, view towards fold at 45º to planes of each plate. 

     In order to understand the transmission of torsional moments through this subdomain, a 

solid model composed of 20 node conforming hexahedral elements was analysed. This model 

was based on the use of two elements through the thickness, i.e. the height of all elements was 

taken as 0.125m. The mesh was uniform with square elements in plan of dimension 0.25m 

except around the perimeters where one dimension was reduced in two stages to 0.0625m in 

order to improve modelling of the behaviour within the boundary layers. 
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     Although this model has only 1680 hexahedral elements, and is not therefore expected to 

produce accurate stresses, the model is constructed with three subdomains, one each to 

represent a plate, and one to represent the spine or intersection zone. These subdomains are 

shown in Figure 10, and they are coupled at the 165 nodes at each interface so that the 

corresponding nodal forces that satisfy the weak equilibrium conditions are output. These forces 

can then be used to recover equilibrating stress-resultants acting on and within the spine. 

 

 

 

 

 

 

 

 

 

FIG. 10: Exploded view of the solid finite element model. 

     Comparisons are now made in Figure 11 between the torsional moments transmitted to the 

spine from the horizontal plate, and the total vertical tractions acting on the spine, as given by 

the plate and solid models. 

 

 

 

 

 

 

 

 

FIG. 11: results for Mxy kNm/m (×107) from horizontal plate,  

and vertical tractions on spine kN/m (×107) . 

     Although the values of the torsional moments are different, their distributions are very 

similar in that this moment is almost constant along the spine except adjacent to the ends. This 

implies that these moments are transferred along the spine to its ends with a consequent 

constant vertical shear force within the spine, which is confirmed by the shear force diagram in 

Figure 12. 

     In terms of stress-resultants acting on and within the spine, the plate and solid models thus 

indicate the same mechanism for the transfer of torsional moments, with the plate model 

probably influenced by a reduced effective spine stiffness due to the assumed release of torsion 

at the centre of the spine. 
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FIG. 12: Vertical shear force kN (×107) diagram for the spine. 

5 Proposals for a general spine element 

 The spine as described in the previous sections has been used as a device to explain the 

kinematic connections between hybrid plate elements when torsional moments are released at 

the fold line. However, the concept of a spine element can be developed as a 1D hybrid 

equilibrium element with the ability to accept non-zero torsional moments and transfer internal 

stress resultants along its length. As regards the physical analogy, the vertebrae become 

connected and interact with each other. 

 

 

 

 

 

 

 

 

 

 

FIG. 13: spine element 

     The 1D element is a development from earlier ideas proposed by Robinson for a mode-

amplitude technique [13,14], but recast in the mould of a hybrid equilibrium element with 

independent kinematic variables. With reference to Figure 13, consider a prismatic element with 

an axis, or directrix, and a surface formed by a generatrix, a closed perimeter curve that takes 

the place of the rulings on the side of a plate element.  The total closed surface is made up of 

three parts, two end sections numbered 1 and 2 that are assumed to remain rigid each having 6 

kinematic degrees of freedom, and the surface numbered 3 formed by the generatrix. Each 
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perimeter ruling can have up to 6 kinematic displacements (3 translations and 3 rotations) that 

are functions of a parameter ξ which represents the position of a ruling along the directrix. The 

side displacements of adjacent plate elements must be identified with those of the spine surface 

along its length, the end displacements of a spine element are identified with adjacent spine 

elements. 

     The kinematic relations in Equation (1) now take the form in Equation (6) for an element with 

rotation functions of degree p: 

( )
vV ⋅=

















=

ξξξξδδδδ

δδδδ

δδδδ

δδδδ

3

2

1

   where  

















=

3

2

1

V

V

V

V                                                               (6)   

and V1 = [ ]006I , V2 = [ ]00 6I ,  V3 = ⊗








−

−

pp

p

PPP

PP

10

10

000000

0000000

LL

LL
I3. 

δ1 and δ2 denote the displacement vectors of ends 1 and 2, and δ3(ξ) denotes the displacement 

vector of the perimeter ruling at position ξ between the ends. In general, δ has dimension 9, and 

the displacement vectors are arranged with 3 translational components followed by 3 rotational 

components. Pj denotes the Legendre interpolation polynomial of degree j, and In denotes the 

n×n unit matrix in the Kronecker product. The dimension of the displacement parameter vector 

v is nv = (6 + 6 +3p +3(p + 1)) = 15 + 6p. 

     The internal stress fields are described in terms of up to 6 stress-resultants, i.e. an axial force, 

two transverse shear forces, a torsional moment, and two bending moments. The static relations 

in Equation (1) now take the form in Equation (7). 

Σ = 






























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x

z

y

x

M

M

M

Σ

Σ

Σ

= S.s  where  S = ⊗








+10

0

00

000

pp

p

PPP

PP

LL

LL
I3,                             (7) 

and the degree of the stress parameter vector s is ns = (3(p + 1) + 3(p + 2)) = 9 + 6p. 

     The degrees of the force and moment fields are one higher than the corresponding form of 

displacement to enable equilibrium to be satisfied between internal actions and external actions 

dual or conjugate to the displacements of the surface of the spine. The differential equilibrium 

conditions take the form of Equation (8). 
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d
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, or Δ.Σ + N = 0                     (8)                                     

where Nx, Ny, Nz, denote force components per unit length, and Cx, Cy, Cz denote couple 

components per unit length, applied to surface 3. Of course Equation (8) is still a weak form of 

equilibrium in that it involves stress-resultants rather than stress tensors. However, it provides 
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a flexible connection between plates, whether coplanar or not, and could also represent a 

stiffening spar or beam component. 

     The compatibility Equation (3) now contains DT as defined in Equation (9): 

( ) ( ) ( )[ ] ( )













⋅⋅⋅−⋅+⋅−= ∫

L
TTTT dzVSVSVSD

0

321 10 ξξξξξξξξ∆∆∆∆ ,                                            (9) 

the natural flexibility matrix F and element stiffness matrix K are then formed in a similar way to 

that defined in Equations (3) and (5). 

6 Closure 

• The formulation of the quadrilateral hybrid macro-equilibrium plate element based on 

quadratic fields of moment and linear fields of membrane and shear forces has been verified 

as regards modelling both bending and flat shell behaviour. Its performance appears to be 

comparable to that of the 9-noded conforming Lagrange element, and their complementary 

use should be effective in error analysis. 

• Both types of element converge to the same solution for a folded plate problem when 

torsional moments are released along a fold line. The release of these moments leads to 

boundary layers adjacent to the fold line similar to those observed along soft simple 

supports. 

• Modelling the folded plate with hexahedral elements confirms that the plate models capture 

the essential modes of interaction between the plates and their intersection subdomain, or 

spine. However, the numerical values of the tractions as stress-resultants are not yet in 

agreement. Further refinement of the solid model is required to study the convergence of 

these tractions. 

• Further research is intended to verify and evaluate the performance of 1D hybrid 

equilibrium elements in modelling the spinal intersection subdomain. 

• Further research is also planned to evaluate the use of the hybrid flat shell element in the 

case of geometric non-linear behaviour. 
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