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3 Torsion of beams

Torsion in beams arises from shear loads whose points
of application do not coincide with the shear centre of
the section.

In general, the solution of torsion problems is complex
particularly in case of solid sections of arbitrary shape.
However, the analysis of circular shafts and closed or
open thin-walled tubes is relatively straightforward.

3.1 Revision: Torsion of thin-walled
tubes

We consider a closed-wall section with (possibly vari-
able) thickness t and applied torque T .
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It can be shown that the shear flow q = τ · t has to
be constant around the tube in order to satisfy equi-
librium.

Now we consider the torque caused by the infinitesi-
mal areal element with length ds about an arbitrary
point O

Torque due to ds · q: dT = ds · q · p

Total torque: T =
∫
dT = q

∫
pds = 2qA
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Moreover from Part IB, we know the stiffness relation-
ship between torque and rate of twist

T = G
4A2∮
ds
t

θ′ with θ′ =
dθ

dz

where θ is the rotation of one end of the beam relative
to the other (i.e. twist). The above equation leads to the
definition of a section-specific St Venant’s torsion constant
J

J =
4A2∮
ds
t

so that
T = GJθ′

where GJ is known as the torsional rigidity of the
section.
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3.2 Torsion of solid sections

In the following an approximate method for analysing
solid sections is introduced. First, recall that under
torque cross-sections rotate only as a rigid body (as
seen from the centroidal axis). Therefore, we can ‘nest’
tubes inside one another and add their effects.

Consider the rectangle section
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Take a thin tube with the thickness dy, then sum the
effects of all thin tubes to get their total effect.

Enclosed area by the thin tube A = 2y(b− t + 2y)∮
ds

dy
=

2(b− t + 2y)

dy
+

4y

dy

Now integrate over all the strips in order to compute
the torsion constant J

J =

∫ t/2

0

4A2∮
ds
dy

=

∫ t/2

0

4 · 4y2(b− t + 2y)2

2(b− t + 2y) + 2y
· dy

=

(
bt3

3
− t4

12

)
=
bt3

3
(if b� t)

Finally, the relationship between the torque and rate of
twist for the rectangle section reads

T = GJθ′ = G
bt3

3
θ′

This analysis is not accurate since tubes DO inter-
act but error is in the t4 term so the overall result
is correct. A more general derivation makes use of
the Prandtl stress function (see, e.g., 3C7) ).
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The maximum shear stress τmax occurs on the outer
surface of the rectangle.

To compute τmax consider the outer layer dy which car-
ries the torque dT

dT =Gθ′
4A2∮
ds
dy

= 2qA (see Pages 53 and 54)

⇒ q = τmaxdy = Gθ′ · 2A∮
ds
dy

= Gθ′
2bt

2(b + t)
dy

⇒ τmax ≈ Gθ′ · t (if b� t )

This can be related to the torque, using the relationship
between torque and rate of twist derived on Page 56.

T = Gθ′.
bt3

3

so that

τmax =
3T

bt2

This value applies for b � t. See, for example, Timo-
shenko for more accurate values.
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The torsion constant for built-up sections can
be computed as the sum of torsion constants of the com-
ponent sections (but see Junction effects on Page 64.

J =
∑ 1

3
bt3

J =
1

3
· 10 · 13 +

1

3
· 6 · 23

=
58

3
= 19.3 (L4)

J =
1

3
· 6 · 13 · 2 +

1

3
· 8 · 13

=
20

3
= 6.7 (L4)
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3.3 Torsion of closed versus open sec-
tions

Under torsional loads closed as well as open section
beams twist and develop internal shear stresses. How-
ever, the way how each resists torsion is different.

Note that a pure torque applied to a beam section has
to produce a shear stress system with a zero resultant
force (i.e.

∫
τ dA = 0).

Closed sections In a closed section the shear stress
system can develop in a continuous path around the
cross section.
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J ≈ 4(bh)2

2(b+h)
t

= 2
(bh)2t

b + h
= O(b3t)

Open sections In an open section the shear stress
system can only develop within the thickness of walls.

J ≈
∑ 1

3
bt3 =

1

3
(2ht3 + 2bt3) = O(bt3)

As a result closed sections are much stiffer than open
sections in torsion.
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Practical considerations

Box beams are a widely used closed cross-section in
bridge engineering. They are used with the purpose

• to distribute loads
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(They are better than plate girders for distribut-
ing loads)

• to provide torsional stiffness to resist aerodynamic flutter

(e.g. Severn & Humber suspension bridges)
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But their relative stiffness with respect to torsion can
lead to difficulties with indeterminate supports.

Beam ends up rocking on two supports.
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3.4 Effects of junctions on torsional
stiffness

The section thickness is significantly increased in junction
regions since the torsional stiffness varies as t3. A major
part of the torsional stiffness of rolled steel beams and
cast concrete beams comes from this region.
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3.5 Restrained warping torsion

Although the shapes of closed and open sections remain
undistorted during torsion as seen from the centroidal
axis, they do not remain plane.

Consider the deformation of a beam with rectangular
section during torsion.

The section remains rectangular when twisted (viewed
from the centroidal axis). However, it warps out of its
plane. The analysis discussed in the previous section
assumes section is free to warp , so no axial stresses
are set up.
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The formulation introduced in the previous section is
called St Venant torsion. It is only correct if

- the ends of the beam are free to warp

- the torque is constant along the centroidal axis

But, if torque varies along the centroidal axis or if ends
offer axial restraint , adjacent sections will try to warp
by different amounts, so axial strains and stresses will
be set up.

These will have associated shear stresses , which will
carry some of the torque.

This is known as the restrained warping torsion .

Remark: A few sections do not warp under torsion.
These include solid and hollow circular sections and
square box sections of constant thickness.
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Illustrative example for restraint warping tor-
sion

Consider an I-beam mounted as a cantilever, with torque
applied at the free end.

Due to torque the two flanges will bend in opposite
directions.

Note that d is the height of the section and θ is the
twist that is yet to be determined.
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Curvature of top flange in its own plane is

κ = −d
2u

dz2
= −d

2θ

dz2
.
d

2
= −θ′′d

2

The associated bending moment in the flange is

M = EIfκ = −EIfθ′′
d

2

where If is the second moment of area of the flange.
The shear force in the flange follows from

Q =
dM

dz
= −EIfθ′′′

d

2

Similar force in other flange but
of opposite sense.

Hence the torque carried is

Qd = −EIf
d

2
θ′′′d = −EΓθ′′′

with Γ = If
d2

2
(units L6)
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The total torque carried by the St. Venant and the re-
strained warping component is

T = GJθ′ − EΓθ′′′

where Γ is known as the restrained warping torsion constant

The foregoing (ordinary) differential equation has to be
solved for determining the twist θ. The related bound-
ary conditions are

At root:

- No twist =⇒ θ = 0

- Flange built-in ⇒ du

dz
= 0 =⇒ θ′ = 0

At free end:

- No moment in flange ⇒ EIf
d
2θ
′′ = 0 =⇒ θ′′ = 0
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Aside: The general equation for restrained warping
torsion, not just for this example, is

T = GJθ′ − EΓθ′′′

with the two possible boundary conditions
θ′ = 0 for warping restrained
θ′′ = 0 for free to warp

For the cantilever I-beam considered here the solution
of the differential equation is determined will be of the
form

θ =
T

GJ
(z + c) + ae−αz + beαz

Substituting this into the differential equation yields

α2 =
GJ

EΓ

=⇒ α =
1

λ
=

√
GJ

EΓ

λ has dimensions of length and is a property of the section
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The constants in the ansatz are determined using the
boundary conditions

θ′′ = 0 at z = L ⇒ b

a
= −e

−2L
λ

θ′ = 0 at z = 0 ⇒ T

GJ
− a

λ
(1− b

a
) = 0

⇒ a =
T

GJ

λ

(1 + e−2αL)

θ = 0 at z = 0 ⇒ c = −λ(1− e−2αL)

(1 + e−2αL)

Finally, the solution can be written as

θ =
T

GJ
(z + c) +

T

GJ
λ

(e−
z
λ − e

(z−2L)
λ )

(1 + e−2αL)
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In the long beam limit (i.e. L � λ) the constants
approach

c→ −λ b→ 0 a→ Tλ

GJ

so that the solution approaches to

θ =
T

GJ
(z − λ(1− e−

z
λ))

Clamping one end of the beam reduces its effective

length for torsion by λ =
√

EΓ
GJ (even for constant

torque).
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Importance of warping restraint for practical
sections Example 610× 305× 179kg U.B. (see data
book)

J =
1

3

∑
bt3 = 3·106mm4

If =
3073 · 23

12
= 55·106mm4

∴ Γ =
Ifd

2

2
=55 · 106(570 + 23)2

2
= 9.75 · 1012mm6

∴ λ =

√
EΓ

GJ
=

√
210

81
.
9.75 · 1012

3 · 106
= 2900mm

Typical span/depth ratio ≈ 20 so span likely to be ≈
12m.

⇒ λ ≈ L
4 warping restraint will be significant .
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3.6 Summary

• Warping restraint normally significant for open
sections.

• Angle sections warp slightly but shear centre at
junction of the legs so shear forces have no lever
arm, so warping can be ignored.

• Closed sections warp, but warping displacements
smaller and GJ higher ⇒ λ much lower .

• Circular sections do not warp at all because of
symmetries .

• Calculation of shear centre and EΓ is not trivial.
Most data books do not give them.

• Best summary of values ‘Buckling Strength of Metal
Structures’ Bleich. (FD10) (attached below).

– Theory given in ‘Theory of Elastic Stability’
Timoshenko & Gere Sect. 5.3 (FD14).
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Data for position of Shear Centre and value of Re-
strained Warping Torsion constant.

Taken from Buckling Strength of Metal Structures by
F. Bleich. McGraw-Hill, 1952 (CUED Library FD10)
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