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The paper addresses lower bound limit analyses of reinforced concrete slabs. The assessment problem is
formulated in terms of static variables representing hyperstatic fields of moment, and constraints based
on biconic yield criteria. These fields are generated directly within triangular Kirchhoff and Reissner–
Mindlin type elements, are highly localised, and lead to very sparse matrices for optimisation pro-
grammes. Methods of forming particular equilibrating solutions are presented, which include those
recovered from a yield line solution based on the same mesh of elements. Numerical examples are pre-
sented with Kirchhoff type elements, including the benchmark problem of a square plate with fixed
supports.
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1. Introduction

Lower bound limit analysis exploits the plasticity theorem that
has been expressed by Heyman as the ‘‘master safe theorem’’ [1].
Hillerborg [2] was an early proponent of lower bound limit analysis
for reinforced concrete slabs in the form of the strip method in the
days when manual solutions were prominent, and he noted later
[3] that computational implementation of such methods had not
so far been developed. In the context of the design or assessment
of reinforced concrete slabs, the key aspects are the use of statically
admissible fields of stress-resultants in equilibrium models, appro-
priate strength or yield criteria, and an optimisation procedure.

Computational methods for limit analysis for lower bounds have
been proposed based on mathematical programming techniques,
e.g. linear programming (LP) and second order cone programming
(SOCP). Equilibrium has been enforced in a variety of ways, either
a priori or as linear constraints. However, the enforcement of equi-
librium has not always been strictly satisfied, and hence can raise
uncertainty as to the safety of the result. Such methods are briefly
discussed and referenced in the next paragraph.

An appropriate equilibrium model for slabs depends on
whether the yield criterion involves only moments, or involves
both moments and shear forces. In the former case use can be
made of equilibrium in the Kirchhoff sense, i.e. torsional moments
at boundaries or interfaces are replaced by equivalent shear and
nodal forces. Computational methods that have been proposed
range from modified strip methods based on orthogonal or oblique
families of strips [4,5], to exploiting conventional linear elastic fi-
nite element models with fictitious plastic strains [6], to limit
d. and Elsevier Ltd. All rights reser
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analyses based on triangular Kirchhoff elements and equilibrium
enforced by linear constraints or by a priori processing a global
equilibrium matrix, using pivoting, to determine hyperstatic fields
[7–10], and to limit analyses based on meshless methods [11,12].

In the case when shear forces are significant and should be in-
volved in the yield criteria, complete equilibrium is required with,
in general, continuity of normal bending and torsional moments
and normal components of shear force. This situation would nor-
mally arise in the case of flat slabs. The stronger sense of equilib-
rium is accounted for in Reissner–Mindlin plate theory. In both
cases we wish to take advantage of a minimum number of static
variables in a lower bound limit analysis, as advocated in [7]. How-
ever, rather than involve numerical processing of a global equilib-
rium matrix, we propose a simple direct method to construct
independent hyperstatic fields of stress-resultants to be used as
static variables. A common yield criterion for moments leads to
the biconic yield surface as defined by Nielsen [13] in terms of
the top and bottom layers of reinforcement. More refined criteria
have been proposed by May and Lodi [14], for moderate levels of
reinforcement, which involves a more complicated sandwich mod-
el of a slab. The incorporation of transverse shear has also been
proposed by Marti [15]. In this paper we will restrict ourselves to
the simpler, but common case, of low levels of orthogonal rein-
forcement when shear failure is unlikely.

The structure of the paper is as follows: Section 2 develops the
concepts of directly using moment fields that are a priori statically
admissible (SAMF), and the formulation of the optimisation prob-
lem as a standard second order cone programme (SOCP). The con-
cepts are illustrated with reference to a simple slab in Section 2,
and generalised within a finite element framework in Section 3.
Section 3 describes triangular equilibrium elements and the
construction of independent hyperstatic moment fields in the
ved.

http://dx.doi.org/10.1016/j.compstruc.2012.02.010
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context of Kirchhoff and Reisner–Mindlin plate theories. Section 4
considers the formation of particular SAMF in relation to the
applied loads. As particular solutions for the optimisation
programmes, these may be formed directly from an initial elastic
analysis of an equilibrium model, or may be recovered from a sim-
ilar analysis based on displacement elements, or from a yield line
analysis based on rigid triangular elements. Numerical examples
are presented in Section 5, and the paper concludes in Section 6
together with directions for future work.

2. Development of concepts via a simple example

This example is based on a particular SAMF defined by Nielsen
[13]. A rectangular slab is simply supported on two adjacent sides
at x = �a and at y = �b, and loaded with a uniform line load on side
at x = a, as indicated in Fig. 1. The particular moment field m0 and
two hyperstatic fields m1 and m2 are defined in Eq. (1),
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After torsional moments acting on the sides of the slab are replaced
by equivalent Kirchhoff shear forces, the reactions are as defined in
Fig. 2.

The second two fields only involve self-balancing distributions
of shear and corner forces as reactions, and are thus hyperstatic.
These are used to modify the particular solution within an optimi-
sation procedure. As an orthotropic slab, the biconic yield surface,
as illustrated in Fig. 3, corresponds to the two yield constraints in
Eq. (2) for each constraint point i,

ðmh
ix �mixÞ � ðmh

iy �miyÞ � m2
ixy; ðms

ix þmixÞ � ðms
iy þmiyÞ � m2

ixy;

ð2Þ

where ðmh
x ;m

h
yÞ and ðms

x;m
s
yÞ denote hogging and sagging yield mo-

ments due to top and bottom layers of reinforcement in the x and y
directions respectively [13].

Constraint points may be dispersed over the domain of the slab
in any appropriate manner, but a regular grid of nine points will be
used in this example, as indicated in Fig. 1. The components of the
moment field in Eq. (2) are linearly related to the load factor k and
the hyperstatic variables in vector {X} in Eq. (3).

mi ¼ kmi
0 þ ½B

i� � fXg at point i for i = 1 to N, or collectively for all
points:

m ¼ km0 þ ½B� � fXg: ð3Þ

In Eq. (3) suffix 0 denotes particular values of moments that equil-
ibrate with the loads, and matrices [Bi] contain hyperstatic values of
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Fig. 1. Rectangular slab with a local coordinate system, and a set of constraint
points.
moments at points i. In the case of structural assessment, where the
yield moments ðmh

x ;m
h
yÞ and ðms

x;m
s
yÞ are already known, the opti-

misation problem can be expressed as a standard second order cone
programme [16] as follows:

Maximise k subject to:
Equality constraints m ¼ km0 þ ½B�fXg, and
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for the hogging or sagging cones respectively.
The inequality constraints in Eq. (4) are derived from those in

Eq. (2) by moving the apexes of the cones to the origin of a
Cartesian axis system (Z1, Z2, Z3).

A typical inequality constraint can then be visualised in terms of

the Lorentz cone in Fig. 4 defined by Z3 ¼ r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Z2

1 þ Z2
2

q
. A

constraint becomes Z3 P r.
In the case of design, the load factor is known and we can ex-

press the yield moments as linear functions of a set of design
parameters. Eq. (4) can then be rearranged into a standard form
containing hyperstatic and design parameters as variables. The
objective function may then be a linear cost function of the design
parameters.
3. Finite element implementation using equilibrium elements

Implementation of the procedures outlined in Section 2 can be
generalised by exploiting equilibrium elements within a finite ele-
ment framework. Such elements have been previously formulated
as hybrid elements [17–19], and we consider here Kirchhoff or
Reissner–Mindlin types of element in their triangular forms. Inter-
nal moment fields are assumed to be in polynomial form, and the
number of independent fields is given by (p2 + 5p + 3) where p de-
notes the degree [19]. In this section we focus on the formation of
localised hyperstatic fields of moment and shear. These can be con-
sidered in a hierarchical way starting with moment fields of degree
0, as in the Morley element [17], and adding further fields as the
degree increases.

3.1. The Kirchhoff type of element

This type of element requires continuity of normal bending mo-
ments and equivalent Kirchhoff shear forces across element inter-
faces, and equilibrium of equivalent nodal forces. The degree of
statical indeterminacy, a, of a singly connected patch of Kirchhoff
elements with static boundary conditions is now established.

Denote the number of elements, edges and nodes in the patch
by: m, e, and n respectively. a is given by the number of indepen-
dent moment fields less the number of independent equilibrium
conditions at the edges and nodes. There are (p + 1) conditions
for normal edge moments plus p conditions for equivalent
Kirchhoff edge shear forces plus 1 condition for each set of nodal
forces. Three of these conditions are dependent due to the require-
ment for overall equilibrium, leading to Eq. (5).

a ¼ ðp2 þ 5pþ 3Þm� ðð2pþ 1Þeþ nÞ þ 3: ð5Þ

The edges and nodes can be classified as internal or external, the
latter term signifying that the entities lie on the boundary of the
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Fig. 2. Equivalent Kirchhoff reactions.

Fig. 3. Biconic yield surface for an orthotropic slab.

Fig. 4. Alternative Lorentz (ice cream) cones for hogging and sagging cones.

Fig. 5. Singly connected domain (patch) of elements with three types of
subdomain.
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domain. Then e = eint + eext and n = nint + next, and because the do-
main is singly connected:

3m ¼ ð2eint þ eextÞ ¼ ð3e� 3nþ 3Þ
¼ 3eint þ 3eext � 3nint � 3next þ 3: ð6Þ

Since also eext = next for a boundary that forms a single closed loop,
we have the following topological property of the patch:

eext ¼ eint � 3nint þ 3: ð7Þ

Eq. (5) can now be recast in the general form of Eq. (8).

a ¼ m � pðp� 1Þ ðin type I subdomainsÞ
þ eint � 2p ðin type II subdomainsÞ
þ nint � 2 ðin type III subdomainsÞ: ð8Þ

The Kirchhoff elements are themselves twice hyperstatic when
they have quadratic moment fields, but they are isostatic for linear
and constant moment fields. Hence it is possible to define indepen-
dent hyperstatic fields for a domain within local subdomains of
various types, as illustrated in Fig. 5, in a hierarchical way accord-
ing to the degree of the moment field:

For degree 0, there are two constant fields within each subdo-
main of type III i.e. a closed star patch of elements with just a single
internal node;

For degree 1, there are in addition two linear fields in each
subdomain of type II, i.e. a pair of adjacent elements;

For degree 2, there are in addition two quadratic fields in each
subdomain of type II and two hyperstatic quadratic fields in each
subdomain of type I, i.e. a single element, corresponding to South-
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well functions U = L1L2L3 and V = L1L2L3, where L1, L2, and L3 are the
area coordinates.

The transfer of constant moments between adjacent elements
in a subdomain of type III is illustrated in Fig. 6, where the arrows
at the midpoints of edges indicate resultant moment vectors.

Linear and quadratic moment fields are derived from Southwell
stress functions U and V as detailed in Fig. 7. The transfer of mo-
ments and equivalent Kirchhoff shear forces between adjacent
elements in subdomains of type II is also illustrated in this figure.

The presence of kinematic boundary conditions and/or open-
ings leads to an increase of a, and the set of hyperstatic fields
can be extended to form a complete basis using similar forms of
construction.

3.2. The Reissner–Mindlin type of element

In this case continuity is enforced at element interfaces be-
tween normal bending moments, torsional moments about the
normal axis, and the transverse shear force. However restrictions
are imposed on these components as element tractions in order
to be equilibrated by internal polynomial moment fields of appro-
priate degree, i.e. in order to be admissible [19,20]. One way to
overcome these restrictions is to subdivide the element into three
triangular ‘‘primitive’’ elements as first proposed by Sander [21],
and such elements will be referred to as macro-elements.

The macro-element with piecewise linear moment fields is iso-
static and it can transmit arbitrary linear distributions of moment
tractions or constant distributions of shear traction on its sides
provided the tractions are in overall equilibrium. This implies that
a patch of type III contains three hyperstatic moment fields when
side moments and/or side shear forces are constant, and patches
of type II contain two further hyperstatic moment fields corre-
sponding to linear distributions of torsional moment along the
interfaces.

If we permit quadratic moment fields, then patches of type II
contain three further hyperstatic moment fields corresponding to
quadratic distributions of moment along the interfaces, and a com-
bination of a linear distribution of shear forces with a counterbal-
ancing constant distribution of torsional moments. Furthermore
the quadratic macro-element is itself hyperstatic of degree 6 when
considered as a patch of type I. The number of hyperstatic fields for
general moment degree p [20] is summarised in Eq. (9), and a sim-
ilar hierarchic structure to that described for Kirchhoff elements
could be organised in order to exploit these fields.

a ¼ m � 3pðp� 1Þ ðin type I subdomainsÞ
þ eint � ð3p� 1Þ ðin type II subdomainsÞ
þ nint � 3 ðin type III subdomainsÞ: ð9Þ
Fig. 6. Transfer of hyperstatic constant moments in a subdomain of type III.
4. Particular solutions

The hyperstatic moment fields serve as the static variables in
the optimisation process. However a particular statical solution is
required to complete a SAMF. Although the particular solution is
arbitrary, we will outline two approaches which are intended to
serve as ‘‘good’’ solutions prior to optimisation.
4.1. Particular solutions from a yield line analysis

The first approach involves recovery from a preliminary yield
line analysis based on rigid triangular elements that are allowed
to yield along interfaces between adjacent elements [22]. This type
of analysis generates a weak form of equilibrium which involves
constant normal bending moments on the sides of elements and
nodal shear forces that represent interaction between elements
and distributed loads applied over the area of an element.

As Kirchhoff elements, internal constant moment fields can be
uniquely defined to balance the side moments. When loads are
uniformly distributed, additional quadratic fields of moment can
also be defined to complete the equilibrium of a particular solution
[18]. This definition is based on a system of 3-way spanning beam
strips which are simply supported on the sides of an element so as
to lead to uniform shear reactions around its boundary. However, if
the mesh is sufficiently refined, then equilibrium defaults resulting
from neglecting these additional fields may be insignificant.

Alternatively, a strong form of equilibrium in Reissner–Mindlin
type elements can be recovered by first splitting the nodal forces
and replacing them by codiffusive statically equivalent distribu-
tions of constant shear force and torsional moment acting on the
sides of an element, as indicated in Fig. 8 [23]. Piecewise linear mo-
ment fields can then be uniquely determined within each macro-
element to be statically admissible with the constant modes of dis-
tribution of side tractions. In the event that a uniformly distributed
load is applied over the element, the moment field is extended to
account for the load in the same way as in the preceding
paragraph.

The main advantage of this approach is that it enables both
upper and lower bound solutions to be derived from the same
mesh of finite elements, and without requiring a linear elastic
solution.
4.2. Particular solutions from a linear elastic analysis

In this approach SAMF are either obtained directly from a finite
element analysis based on triangular hybrid equilibrium elements
[19], or are recovered from a finite element analysis based on more
conventional displacement type elements that include nodal shear
forces and moments (e.g. Reissner–Mindlin elements based on
standard shape functions for the interpolation of deflections and
rotations). In the latter case, splitting or resolution of nodal forces
and moments is carried out, in a similar way as described in Sec-
tion 4.1, to produce statically equivalent codiffusive distributions
of side tractions [24]. SAMF are then determined for an element
by solving a local linear elastic problem. Alternative techniques
for recovering SAMF, which are approximately compatible, in a
complete finite element model are also being investigated for
plates using partition of unity concepts [25].

The advantage of carrying out an initial linear elastic analysis is
that, although the results of an analysis are somewhat dependent
on the type of element and the mesh used, moment redistribution,
using hyperstatic fields in the context of limit analysis, could then
be controlled so as to limit the changes in moments. This may be
required for reinforced concrete slabs when questions of ductility
arise [26]. It is worth noting here that EC2 [26] emphasises that



Fig. 7. Hyperstatic element interactions in subdomains of type II.

Fig. 8. Transformation from Kirchhoff type element to a Reissner–Mindlin type macro-element.
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‘‘The moments at ULS calculated using a linear elastic analysis may be
redistributed, provided that the resulting distribution of moments re-
mains in equilibrium with the applied loads’’.

5. Numerical examples

5.1. Example in Section 2

As a numerical example of an assessment problem, without re-
course to a finite element model of triangular elements, consider
the slab in Fig. 1 when a = b = 1. Let the slab be homogeneous
and isotropic, with equal magnitudes of hogging and sagging yield
moments, i.e. let mh = ms = mY. With reference to Fig. 4, Eqs. (3) and
(4) simplify for point i with coordinates (xi,yi) to Eq. (10).
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We could now solve the inverse design problem, i.e. find the
minimum value of mY for a unit value of k. For any value of the vec-
tor {X}, it is now an easy matter to determine the maximum value
of mY that satisfies all the cone constraints. Then {X} can be varied
in order to determine the minimum of the maximum values of mY,
and this results in mY = 0.773 kNm/m at critical constraint points 2,
5, and 8 in Fig. 9, when bXc ¼ b�0:386� 0:286c. Since we now have
the optimum relation between mY and k, we can use the inverse of
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this relation to conclude that, if mY = 1, then k = 1.2937. This result
have also been confirmed using the version of SOCP as imple-
mented by MOSEK optimisation software [27].

However, the pattern of constraint points may overlook more
critical intermediate points, and this is checked by scanning the
whole domain with X as already found.

The scan reveals that yield is violated most at a point located at
(0.5,�1.0) where the yield utilisation ratio (YUR) becomes 1.019
due to a hogging moment. This ratio is defined by the length of
the moment vector in (mx,my,mxy) space divided by the length of
the vector when projected onto the yield surface. Fig. 10 illustrates
the variation of YUR over five sections where x is constant, includ-
ing the section at x = 0.5 where the ratio is greatest. The implica-
tion is that this solution gives a safe lower bound with mY = 1 if
it is scaled, and then k is reduced to 1.2937/1.019 = 1.270.

A good quality reference solution is derived for comparison
using similar concepts in a finite element model. Using SOCP and
a regular finite element mesh, with 3600 elements based on linear
hyperstatic moment fields and using seven constraint points per
element, the lower bound achieved is given by k = 1.581. The
corresponding variation of the yield utilisation ratio is plotted as
a surface in Fig. 11.
5.2. A benchmark problem: isotropic square slab with fixed sides

Another example employing finite elements concerns the prob-
lem of a homogeneous isotropic square plate with fixed sides of
Fig. 10. Sections through the YUR surface based on the two hyperstatic variables.

Fig. 11. Surface plot of yield utilisation ratio for a regular mesh with 3600
triangular elements. Dark surface indicates YUR ? 1.0, light surface indicates
YUR ? 0.0.
unit length, subject to a UDL and constrained by the Nielsen yield
criterion with mY = 1. This problem serves as a useful benchmark
problem since it is one of the few for which an analytical greatest
lower bound solution is known [28], i.e. the maximum load factor
k = 42.851.

Particular solutions are based on yield line analyses for regular
meshes up to 256 elements. The corresponding yield line patterns
are shown in Fig. 12. The equilibrium solutions are derived from
linear, p = 1, and quadratic, p = 2, Kirchhoff elements with the qua-
dratic moment field constructed as explained in Section 4.1 serving
as the particular solution for the uniformly distributed load.

Optimisation was carried out for both upper and lower bound
solutions using LP with the interior point method and SOCP respec-
tively. A comparative lower bound solution was also obtained by
using a faceted yield surface, with eight facets inscribed within
the two cones, to approximate the biconic yield surface in a way
to simulate the Wood-Armer equations [29,30]. For this solution,
a LP was again used for optimisation, and the error in k was 6%
on the conservative side with a mesh of some 500 elements.

The best lower bound solution in Fig. 12 is based on 32 linear
elements for the whole plate, and gives k � 42.0. The results for
lower bound load factors can be compared with recent results ob-
tained by Krabbenhoft et al. [31] of 42.820 based on a regular mesh
of 2500 linear elements modelling one-eighth of the plate,
Krabbenhoft et al. [32] of 42.831 based on a regular mesh of
8192 elements modelling one-quarter of the plate using SOCP,
and Le et al. [12] of 42.83 based on a regular 40 � 40 grid of nodes
for the whole plate and an element free Galerkin method.

5.3. Moment redistribution associated with concentrated loads or
supports

The final two examples concern redistribution of moments in
the vicinity of a concentrated load or a column support, in the con-
text of a reinforced concrete flat slab. In these examples an elastic
field of moments is derived based on Reissner–Mindlin theory with
equilibrium elements, assuming uncracked plain concrete with
E = 25 GPa and v = 0.2, and then full plastic redistribution is ac-
counted for based on Kirchhoff elements and orthotropic reinforce-
ment with equal yield moments for hogging and sagging.

5.3.1. Concentrated load
This example concerns a 12 m � 6 m rectangular slab of thick-

ness 0.2 m, simply supported on the longer edges and free on the
shorter edges. The load consists of 100 kN as a UDL over a central
square area of side length 0.2 m. The yield moment in the span
direction is 100 kNm/m, whilst that in the transverse direction is
l � 100 kNm/m where l 6 1. Advantage is taken of symmetry,
and the results are shown for a quadrant with the load applied at
the origin. Figs. 13–15 present surface plots, with contours, of com-
ponents of moment, where positive components are plotted above
the mesh and negative components are plotted below the translu-
cent mesh.

The relatively high elastic moments in the neighbourhood of the
load are redistributed in the isotropic and the anisotropic cases
such that an effective width of slab fully exploiting the my capacity
can be identified in Figs. 16 and 17. At midspan, this width closely
corresponds to the position of the hogging yield line and to the to-
tal width of the yield zones indicated in these figures. The yield line
pattern indicated in Fig. 16 was optimised in each case using a sin-
gle geometric variable: the horizontal distance of the hogging yield
line from the centre.

The surface plots of the components of moment exhibit waves
of ‘‘creasing’’ and ‘‘tearing’’ at element interfaces in the vicinity
of the sagging yield line after redistribution, whilst fully satisfying
local equilibrium within elements. These features may be partly



Fig. 12. Convergence of limit analyses with number of elements. The lower bound solutions are presented in terms of YUR grey scale contours, where black indicates
YUR � 1.0, and white indicates YUR � 0.0.

Fig. 13. Surface plots with contours of mx when l = 0.1.

Fig. 14. Surface plots with contours of my when l = 0.1.
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attributable to the presence of large moment gradients produced
by the anisotropy in a regular but biased mesh of Kirchhoff ele-
ments, for which only the normal bending moment is required to
be continuous at the interfaces. Another contributory factor may
be the potential for non-unique solutions for moments in the
vicinity of the sagging yield line. Here the moment contours in Figs.
13–15 indicate that the torsional moment predominates, which
implies that yielding is occurring in the neighbourhood of the
intersection of the two cones of the biconic yield surface.
5.3.2. Concentrated supports
This example simulates a square flat slab with a uniformly dis-

tributed load supported on a symmetric arrangement of four blade
columns of length 0.5 m, as indicated in Fig. 18. The centre of the
column on line OA is situated at the midpoint of this line.

The slab is assumed to have equal isotropic moment capacities
for both hogging and sagging moments. After plastic redistribution,
the zones of slab that are at full yield are indicated for the complete
slab by the shaded areas, and in the surface plot of YUR for the one



Fig. 15. Surface plots with contours of mxy when l = 0.1.

Fig. 16. Upper and lower bound solutions with l = 0.1.

Fig. 17. Lower bound yield utilisation ratio surface plots. Dark surface indicates YUR ? 1.0, light surface indicates YUR ? 0.0.
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Fig. 18. (a) Isotropic flat slab: grey zones indicate full yield, dashed line indicates a possible hogging yield line and (b) yield utilisation ratio surface plot for area OAB.
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Fig. 19. mx Moment fields: (a) elastic, and (b) fully redistributed plastic. Sagging moments occur where the finite element mesh is visible.
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eighth area OAB in Fig. 18. The distributions of the component of
moment mx are shown qualitatively in Fig. 19 for the elastic and
fully redistributed plastic moments after scaling so as to equili-
brate with a unit pressure load. Then the ranges of principal
moments are:

– 1.73 to 10.60 kNm/m for elastic moments, and
– 4.0 to 4.0 kNm/m for plastic moments.

These imply that if the slab is designed to withstand the distri-
bution of elastic moments as ultimate moments, then the plastic
load capacity is factored by 10.60/4.00 = 2.65 assuming that ade-
quate ductility is available. This may be compared with a yield line
solution based on a single hogging yield line, positioned as indi-
cated in Fig. 18, which would give a load factor of 10.6/
3.9853 = 2.66.

This example again illustrates how the relatively high elastic
moments that occur at supports can be redistributed into the
neighbouring areas to give yield zones as opposed to yield lines,
and thereby reduce the design moments in a rational way whilst
maintaining equilibrium. Further results of investigations into
these examples can be found at the authors’ website [33].
6. Conclusions and future directions

A lower bound, and hence safe, method of assessing the load
capacity of a reinforced concrete slab has been presented. The
method exploits the possibility of direct hierarchical construction
of localised hyperstatic fields of stress-resultants for finite element
equilibrium models using either Kirchhoff or Reissner–Mindlin
types of element. The method leads to highly sparse formulations
of linear or second order cone programmes for optimisation.

The use of a similar finite element mesh to initially obtain an
upper bound yield line solution enables both types of bound to
be realised, and the yield line solution also provides the data for
a particular equilibrating field of moments to be determined for
use in the lower bound analysis.

Initial results appear to be promising, and future developments
will be aimed at:

Investigating the effects of using a set of hyperstatic fields that
form an incomplete basis for the complementary solution space;

Investigating the use of other forms of yield criteria for mo-
ments, such as von Mises in the context of metallic plates, and
the more conservative criteria for reinforced concrete slabs pro-
posed by May et al. [14].

Investigating extensions of yield criteria to include the effects of
shear in a sandwich model as proposed by Marti [15] together with
appropriate Reissner–Mindlin type elements.
Formulating the slab assessment problem to account for limited
ductility by conforming with simplified code requirements that
limit moment redistribution from an initial linear elastic solution.

Extending lower bound optimisation in the context of design,
where both design and static variables are involved.

Elastic shakedown.
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