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SUMMARY 

The paper describes an unexpected type of convergence behaviour occurring for a single, variable degree, primitive-type equilibrium element. For 

this element the number of independent stress fields is less than the number of independent boundary displacement variables that do not correspond 

to rigid element modes of displacement. This leads to the conclusion that the element is hypo-static and that, in the absence of self-stressing modes, 

no convergence can occur. Such 'conventional' counting procedures, do not, however, reveal the whole picture, and numerical determination of the 

rank of the coefficient matrix of the equilibrium equations shows that, in practice, self-stressing modes can and do exist in a model which would 

conventionally be described as hypo-static. The rank deficiency in the coefficient matrix is shown to be due to the fact that upon transformation, 

independent stress fields do not necessarily lead to independent boundary tractions. Generalisation to conventionally iso- and hyper-static models 

demonstrates that whenever the coefficient matrix is rank-deficient, spurious kinematic modes co-exist with self-stressing modes. The problem 

which reveals the curious convergence characteristics for the primitive-type element is re-solved using a macro-type element and it is seen that with 

the larger degree of hyper-staticity available to this element, strictly monotonic convergence characteristics are observed. 

 

KEY WORDS hybrid-equilibrium finite elements, statically admissible, spurious kinematic modes, self-stressing 

modes 

 

INTRODUCTION 

When faced with an unfamiliar type of finite element, confidence in its performance can be gained by testing it on a 

problem for which either the exact solution is known, or reliable results from another type of numerical approach are 

available. It was with this idea in mind that the variable degree quadrilateral primitive-type element described in 

reference [1] was tested. The problem examined is shown in Fig. 1. 
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Fig. 1. A plane problem 

 

The static boundary conditions are determined so as to be in equilibrium with the following stress field : 
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This stress field, whilst being statically admissible, is not kinematically admissible and is, therefore, invalid as the 

solution to the problem.  

 

A plane stress constitutive relationship is used with a Young's modulus E = 210N / m2 , a Poisson's ratio ν = 0 3. , and a 

material thickness t = 0.1m. The problem was analysed using a single quadrilateral primitive-type equilibrium element 

of the type discussed in [1] and for varying degrees of approximation in the range 2 10≤ ≤p  the finite element strain 

energies are given in Table 1. For a constant degree of approximation (p = 0) the linear static boundary conditions 

(tangential component of the tractions - see Fig. 1) could not be equilibrated and for p = 1 the applied tractions excited 

spurious kinematic modes. For these reasons results for the constant and linear cases are not available. 

 

Table 1. Strain energy for quadrilateral primitive-type element (Nm) 

p 2 3 4 5 6 7 8 9 10 

Uh  2048.2804 2048.2804 2048.2804 2048.2804 2042.1350 2042.1350 2041.6208 2041.6208 2041.6028 

Note: The strain energy for the stress field of equation (1) is 387125 189 2048 2804/ .≈ Nm . 

The results shown in Table 1 are plotted in Fig 2 where the 'exact' solution has been taken from a highly refined 

(equilibrium) finite element model reported in [2]. 

'exact' solution

Uh

degree of approximation p

 

Fig. 2. Convergence of strain energy for a primitive-type element 

 

The convergence of the strain energy with increasing degree of approximation is at first sight unexpected. Rather than 

the strictly monotonic convergence one might have predicted i.e. U Uh p i h p i= + =
<

1
, a step-wise convergence occurs for 

which the strain energy remains constant for certain ranges of the degree of approximation i.e. U Uh p i h p i= + =
≤

1
. In order 

to provide an explanation for this behaviour it is necessary to summarise and examine the theory behind equilibrium 

elements. 
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HYBRID EQUILIBRIUM ELEMENTS 

A recent paper [3], in which the theoretical and practical aspects of this type of element are discussed, is used as the 

basis for the following summary. For a single primitive-type
1
 equilibrium element, e, the equations of internal 

compatibility and boundary equilibrium are : 
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where the various symbols have the following meanings : 

 

n n es s×

= ∫Fe S fST de  natural flexibility matrix (3a) 

 

n n ev s×

= ∫De V TST

∂

ds  

 

 

coefficient matrix of the equations 

of edge equilibrium 

 

 

(3b) 

 

ge V tT
= ∫

∂e

ds  applied edge tractions (3c) 

and where : 

 

se  are the undetermined amplitudes of the ns  independent modes of stress which are statically admissible with zero body 

forces and are represented by the columns of the matrix S (σσσσ  = Sse ), and 

 

ve  are the undetermined amplitudes of the nv  independent modes of edge displacement which are represented by the 

columns of the matrix V which include nr  rigid element modes of displacement. 

 

The matrix f is the material matrix relating strains (εεεε ) to stresses (σσσσ ) such that σσσσ εεεε= f  and the matrix T relates stresses 

to boundary tractions (t) i.e. t = Tσσσσ . The integrations de and ds are taken, respectively, over the volume, and around the 

boundary of the element. 

 

Equilibrium between the applied edge tractions ge  and the internal stress fields σσσσ  = Sse  is expressed by equation (2b). 

Dual to these are the following equations : 

 

D v
e eT

n n

e

s v×

= δ                                                                               (4) 

 

which express compatibility between the element edge displacements ve  and the element deformations δδδδ
e . 
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The nr  rigid element modes of edge displacement satisfy the homogeneous form of equation (4). In addition, for the 

hypo-static case where n n nv r s− >  there are further modes of displacement satisfying the homogeneous form of (4). 

These modes of displacement are called spurious kinematic modes and the number of these is given as : 

 

n n n nskm v r s≥ − −                                                                           (5) 

 

For each spurious kinematic mode there is a corresponding mode of edge traction which is inadmissible. Inequality (5) 

becomes an equality when the ns  columns of the matrix De  are independent. It is easy to fall into the trap of assuming 

that, since the stress fields (the columns of S) are defined as being independent, then the tractions corresponding to these 

stress fields (the columns of TS) are also independent. This, however, is not the case as will be demonstrated. If the 

matrix De  is defined as in (3b) except with V replaced by V , which excludes rigid element modes, then the rank 

deficiency of De  is defined as s, and (5) may be written as : 

 

n n n n sskm v r s= − − +                                                                       (6) 

 

In addition to affecting the number of spurious kinematic modes, s also affects the number of self-stressing modes i.e. 

the number of modes of stress that satisfy the homogeneous form of the equilibrium equations (2b). For the hypo-static 

case being considered the number of self stressing modes will be given by : 

 

n sssm =                                                                                   (7) 

 

This leads to the, perhaps surprising, conclusion that an element which is conventionally described as hypo-static can 

possess self-stressing modes. These self-stressing modes result from the rank deficiency of De  and explain why the oft 

quoted stability criterion, which states that the number of independent stress fields should satisfy n n ns v r≥ −  , see [4] 

(p388) for example, is a necessary but not sufficient condition to guarantee a formulation free from spurious kinematic 

modes. 

 

It is possible to generalise this idea to models which are conventionally described as hyper- and iso-static. This has been 

done in Table 2, which defines the descriptors hyper-, iso-, and hypo-static in terms of the independent characteristic 

numbers, and is illustrated schematically in Fig. 3. 

 

Table 2. The effect of rank deficiency (s) on the dependent characteristic numbers 

Conventional description Independent characteristic numbers Dependent characteristic numbers 

 (relationship between) nssm  nskm  

hyper-static n n ns v r> −  n n n ss v r− + +  s 

iso-static n n ns v r= −  s s 

hypo-static n n ns v r< −  s n n n sv r s− − +  

 

                                                                                                                                                                                                 
1
the description primitive-type distinguishes these elements from macro-type elements which are assemblies of the basic or primitive-type element. 
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In Table 2 the dependent characteristic numbers (nssm  and nskm ) are defined in terms of the independent characteristic 

numbers and the rank deficiency s for the three conventional descriptions of an element. It is seen that both the number 

of spurious kinematic modes and the number of self-stressing modes are increased by the value of s and that models in 

which spurious kinematic modes and self-stressing modes co-exist are perfectly feasible. Fig. 3 shows the normal form, 

[5], of the coefficient matrices for the equilibrium and compatibility equations for the three conventional model 

descriptions after extraction of the nr  rigid element modes of edge displacement from V. The independent columns of 

the matrices in Fig. 3 are indicated ‘IND’ and have unity on the leading diagonal with zeros elsewhere. 

Conventional 

description 

Normal form of Equilibrium matrix ( De )  Normal form of Compatibility matrix ( DeT
) 

 

 

 

hyper-static 

 

ns

ssmn

s

vn rn-

vn rn-

IND 0 0

 

ns

s

vn rn-
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s

vn rn-

nskm

ns IND 0 0

 

Fig. 3. A schematic diagram of the normal form of the coefficient matrices De  and DeT
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The aforementioned considerations apply equally well to a number of different types of element. Let us now consider the 

situation that occurs for plane equilibrium elements with stress fields and boundary displacements in polynomial form. 

To ensure equilibrium at the element boundary the degree of the polynomial stress field defined within the element must 

be equal to the degree of polynomial displacement defined on the boundaries of the element. The term degree of 

approximation p is thus used unambiguously to describe both the degree of polynomial stress field assumed within the 

element and the degree of polynomial displacement assumed on the boundary. For a plane problem (nr = 3) with 

polynomial approximations, the independent characteristic numbers for the quadrilateral primitive-type element are 

written in terms of p as : 

 

n pv = × +4 2 1( )                                                                           (8a) 

 

n p ps = + +
1

2
1 6( )( )                                                                    (8b) 

 

At present, the a priori prediction of the magnitude of s is not generally possible and, therefore, may only be determined 

numerically after formation of the De  matrix. For the single quadrilateral primitive-type element the magnitudes of the 

various characteristic numbers have been observed in numerical trials, and are given in Table 3. 

  

Table 3. Quadrilateral primitive-type element characteristics (nr = 3) 

p nv  ns  s nskm  nssm  -/+ class
2
 

0 8 3 0 2 0 - II 

1 16 7 0 6 0 - II 

2 24 12 0 9 0 - II 

3 32 18 0 11 0 - II 

4 40 25 0 12 0 - II 

5 48 33 0 12 0 - II 

6 56 42 1 12 1 - IV 

7 64 52 3 12 3 - IV 

8 72 63 6 12 6 - IV 

9 80 75 10 12 10 - IV 

10 88 88 15 12 15 + IV 

 

The penultimate column of this table indicates whether the model (a single element in this instance) is hypo-static (-) or 

hyper-static (+); in this case there are no examples of an iso-static model. The shaded portion of the table highlights the 

range of degree of approximation for which s is non-zero and where spurious kinematic modes co-exist with self-

stressing modes. It should be noted that despite the existence of spurious kinematic modes, solutions are possible within 

the range of degree of approximation 2 10≤ ≤p . This demonstrates the point that whilst spurious kinematic modes 

certainly do lead to the existence of inadmissible modes of applied traction and a rank-deficient stiffness matrix (see [3] 

                                                           
2 This column (and the columns of Table 4 headed ‘class’) indicates the class of structural assembly following the classification of Pellegrino [6]. 
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for the definition of the stiffness matrix), provided the applied tractions are admissible ('consistent' in matrix 

terminology) a solution is achievable if an appropriate (singular) equation solver is used [1,2]. This solution, whilst 

being non-unique in terms of edge displacements, will be unique in terms of element stresses. For the problem 

investigated in this paper (see Fig. 1) the static boundary conditions lead to applied tractions which are admissible for 

p ≥ 2 . 

DISCUSSION & CONCLUSIONS 

It is now possible to give an explanation for the curious convergence characteristics described in the introduction. Firstly 

it is seen that for the range of degree of approximation 2 5≤ ≤p  the finite element strain energy (as given in Table 1) is 

independent of p. In this range it is observed that the strain energy is equal to that of the stress field given in equation 

(1). The reason for this last point is due to the fact that the element is giving an equilibrium solution and one which 

satisfies the boundary conditions exactly. The explanation why the solution remains independent of p for the given range 

becomes evident on closer inspection of Table 3. It is seen that in the given range of degree of approximation there are 

no self-stressing modes. Since the finite element solution already satisfies the static boundary conditions for p = 2, there 

can be no decrease
3
 in the finite element strain energy until a self-stressing mode is made available. Thus, for p = 6 the 

sudden decrease in strain energy is due to the availability of a (single) self-stressing mode. 

 

As the degree of approximation is increased from p = 6 to p = 7, no change in the value of the strain energy is observed 

despite the three additional self-stressing modes made available to the model. This is reasonable since the existence of 

self-stressing modes, whilst being necessary, is not a sufficient condition for the reduction of strain energy i.e. whilst 

these modes may be available, they may not actually be used. 

 

A similar rationale holds for the higher values of p. As the degree of approximation is increased from p = 7 to p = 8 

some of the three additional self-stressing modes are utilised to improve the solution. For degree of approximation in the 

range 8 9≤ ≤p  no change is detected and finally, for p = 10 a further (small) decrease in strain energy is observed 

giving a solution which is within 0.00003% of the exact solution [2]. It is observed that convergence only occurs with 

even degrees of approximation. This can be explained by noting that anti-symmetric self-stressing modes are 

inadmissible in a problem, such as this one, which exhibits symmetry. 

 

σ σ σ τ τ τx x x x y
y

xy
x

xy
x

xy y
y

= = = ± = = = ±

= = = = = =
0 20 5 0 20 5

0 0 0 0 0 0       ,  , , , ,                        (9)  

 

As an example of a self-stressing mode the one occurring when p = 6 is shown in Fig. 4. This figure is a plot of the stress 

field given in equation (1) subtracted from the finite element stress field for p = 6. A self-stressing mode has zero 

corresponding boundary tractions and this can be observed through the stresses on the boundaries which satisfy the 

conditions given in (9). 

                                                           
3
For force driven problems such as the one considered here, equilibrium models yield a value of strain energy which is an upper bound to the exact 

value. 
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σ x -component σ y-component τxy -component 

Note: the maximum magnitudes of the stresses for the 'exact' solution are in the order of 400, 25, and 200 respectively for the three components of 

stress σ x , σ y , and τxy . 

Fig. 4. A self-stressing mode 

 

The curious convergence characteristics discussed in this paper occurred for the particularly extreme case of a single 

element model. Whilst it might not seem unreasonable to have tackled this problem with a single element (the material 

properties and boundary conditions are continuous and the geometry is simple), it is likely that had a mesh of such 

elements been used the curious convergence would not have occurred or, if it had, it would have been less extreme. The 

reason for this is that whereas for the single element self-stressing modes only become available at a relatively high 

degree of approximation (p = 6 in this case), with meshes of elements self-stressing modes can be set up within groups 

or patches of elements and these will occur at lower degrees of approximation. Consider, for example the additional self-

stressing modes that may occur in a patch of four elements as illustrated in Fig. 5 which shows examples of possible 

self-stressing interactions within a patch of four elements. 

normal force tangential force in-plane moment

 

(a) basic mode 1 (b) basic mode 2 (c) basic mode 3 (d) higher order mode (1 of 4) 

Fig. 5. Illustration of self-stressing modes within a patch of four primitive-type elements 
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The modes are categorised as basic (a, b & c) and higher order (d), [7]. The distinction being made here is that a higher 

order mode is self-equilibrating on a single interelement boundary. There are four such modes in the group of elements 

shown, corresponding to the four interelement boundaries. 

 

In the present state of knowledge, primitive-type elements, whilst forming an interesting area of research, are of limited 

practical utility due to the existence of spurious kinematic modes which occur at the element level (see row 5 of Table 3) 

and which may propagate unpredictably to the model boundaries leading to cases where not all the possible modes of 

applied loading are admissible. Macro-elements, on the other hand, which are groups of primitive-type elements 

judiciously assembled so as to eliminate the effect of spurious kinematic modes on the boundaries of the assembly, are 

robust in the sense that for an arbitrary mesh of such elements all the possible modes of applied loading are admissible 

[2,3]. 

 

Whilst it would be incorrect to give the impression that the curious convergence characteristics reported in this paper are 

peculiar to the quadrilateral primitive-type element alone, it is fair to say, based on the aforementioned argument of 

increasing hyper-staticity with increasing h-type refinement, that this behaviour would be less likely to occur for the 

quadrilateral macro-type element. This point can be demonstrated by comparing the element characteristic numbers for 

the two elements. Table 4 lists the element characteristics for a quadrilateral macro-type element. The quadrilateral 

macro-type element is constructed from four triangular primitive-type elements and the construction is defined by the 

position of the assembly point P as shown in Fig. 6.  

 

P

P

 

Fig. 6. Quadrilateral macro-type element 

 

The characteristics of the macro-type element are dependent on whether the assembly point P is located at the 

intersection of the diagonals (as shown in dotted lines in Fig. 6) or is located away from this point [2,3]. For a plane 

problem ( nr = 3 ) with polynomial approximation, the independent characteristic numbers for the quadrilateral macro-

type element are : 

 

n pv = × +4 2 1( )                                                                            (10a) 

 

n p p p cs = + + − + +
4

2
1 6 8 1( )( ) ( ) ( )                                            (10b) 
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In equations (10), the macro-type element has been considered as a single element with piecewise statically admissible 

stress fields and the relationships given in Table 2 remain true. The term c in equation (10b) depends on the position of 

the assembly point. For P at the intersection of the diagonals c = 1, and for any other position c = 0. 

 

Table 4. Quadrilateral macro-type element characteristics (nr = 3) 

 P at intersection of diagonals (c = 1) P not at intersection of diagonals (c = 0) 

p nv  ns  s nskm  nssm  class ns  s nskm  nssm  class 

0 8 5 0 0 0 I 4 0 1 0 II 

1 16 13 0 0 0 I 12 0 1 0 II 

2 24 25 0 0 4 III 24 0 0 3 III 

3 32 41 0 0 12 III 40 0 0 11 III 

4 40 61 0 0 24 III 60 0 0 23 III 

5 48 85 0 0 40 III 84 0 0 39 III 

6 56 113 0 0 60 III 112 0 0 59 III 

7 64 145 0 0 84 III 144 0 0 83 III 

8 72 181 0 0 112 III 180 0 0 111 III 

9 80 221 0 0 144 III 220 0 0 143 III 

10 88 265 0 0 180 III 264 0 0 179 III 

 

For the macro-type element considered as a whole, the matrix De  possesses full rank, i.e. s = 0, independent of the 

degree of approximation and the position of the assembly point P. It is seen that whereas the quadrilateral primitive-type 

element remained effectively
4
 iso-static up to a degree of approximation p = 6 (see Table 3), the macro-type element is 

effectively hyper-static for any degree of approximation greater than one, and that for a given degree of approximation 

(greater than one) the number of self-stressing modes in the macro-type element, which is more elaborate, is 

significantly greater than for a single primitive-type element. 

 

Of course, the existence of self-stressing modes does not guarantee their use in the solution as has already been 

demonstrated. In order to show that they are actually used, the problem discussed in the introduction will be re-solved 

using a single (variable degree) quadrilateral macro-type element. The finite element strain energies are recorded in 

Table 5 and have been plotted in Fig. 7 and show a strictly monotonic convergence of the type one might expect to see. 

 

Table 5. Strain energy for quadrilateral macro-type element (Nm) 

p 2 3 4 5 6 7 8 9 10 

Uh  2042.5410 2041.8020 2041.6340 2041.6116 2041.6041 2041.6027 2041.6024 2041.6023 2041.6023 

Note: these results are for P positioned at the intersection of the diagonals. 

 

                                                           
4
By effectively it is meant that the actual number of self-stressing modes is used rather than that predicted by a simple counting procedure. 
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Uh

degree of approximation p

macro-type element

primitive-type element

 

Fig. 7. Convergence of strain energy for a macro-type element 

 

Note that whereas for p = 1 a solution was not attainable with the primitive-type element due to the existence of spurious 

kinematic modes, provided the assembly point P is located at the intersection of the diagonals a solution for p = 1 is 

possible with the macro-type element. For p = 1 and with P at the intersection of the diagonals, the finite element strain 

energy is 2168.6508Nm. 

 

In conclusion, it has been illustrated how the conventional descriptors for describing equilibrium models need to be used 

with caution. Independently defined stress fields do not guarantee that corresponding boundary tractions are 

independent, and in the event that they are not, the coefficient matrix of the equilibrium equations becomes rank-

deficient. This results in an increase in both the number of spurious kinematic modes and the number of self-stressing 

modes by the degree of the rank deficiency and leads to situations where such modes can co-exist. The rank deficiencies 

reported in this paper have been determined numerically and further work remains to be done before an a priori 

prediction of the rank of the coefficient matrix can be made. 
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