
# Ramsay Maunder ASSOCIATES Finite Element Specialists and Engineering Consultants

# Comparison of EFE with a 2014 Upper Bound Approach for RC Slabs

An upper bound (unsafe) approach for predicting the collapse of RC slabs has been published in a conference paper, [1]. The results from two standard problems with known theoretical solutions are presented in the paper and in this current document the results from EFE are added for purposes of comparison.

## Uniformly Loaded Square Slab with Fixed Edges

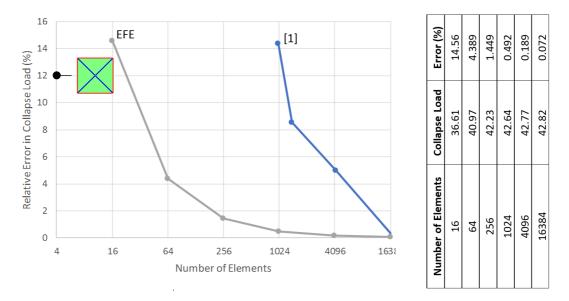
The results for this problem from [1] are shown in Figure 1 where the theoretical solution, attributed to Fox, is also presented.

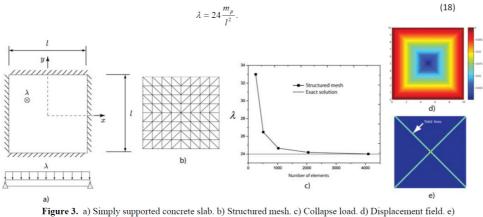


Displacement field. f) Dissipation energy.

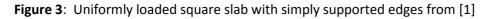


The results generated using EFE are presented in Figure 2 where the results from the non-structured mesh of [1] are included – these have been estimated from the graph of Figure 1.





Figure 2: Comparison of results for EFE and Approach of [1]

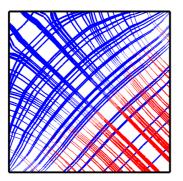
Copyright © Ramsay Maunder Associates Limited (2004 – 2017). All Rights Reserved


The results shown in Figure 2 indicate, for this particular slab configuration, that EFE is more efficient in that it is able to recover a more accurate solution than the method of [1] for a given mesh. It is also interesting to note that for the yield line solution for a regular mesh of four triangular elements will produce a collapse load of 48 with an error of just over 12% as shown in Figure 2.

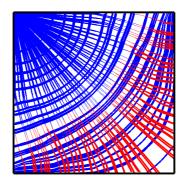
### Uniformly Loaded Square Slab with Simply Supported Edges

The results for this problem from [1] are shown in Figure 3 where the theoretical solution is also presented.




Dissipation energy.




This is a relatively simple problem and the exact solution is recovered with a mesh of four triangular element using the yield line technique or the lower bound technique in EFE.

#### Principal Moment Trajectories at Collapse

The principal moment trajectories at collapse from EFE are shown for the bottom right-hand quadrant of the slabs in Figure 4 where blue lines represent sagging moments and red lines hogging moments.



(a) Simply supported



(b) Fixed

Figure 4: Principal moment trajectories from EFE

#### References

[1] Hector Nevarro, *Upper Bound for Determining the Collapse Load of Concrete Slabs with Conic Programming*, 14<sup>th</sup> Pan-American Congress of Applied Mechanics, March 28-28, 2014, Santiago, Chile.

https://www.researchgate.net/publication/261357604 Upper Bound Method for Determining the Collapse Load of Concrete Slabs with Conic Programming

Copyright © Ramsay Maunder Associates Limited (2004 – 2017). All Rights Reserved