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 Dynamic Characteristics of a Truss Structure 
 

In the final year of his engineering degree course a student was introduced to finite element analysis and 

conducted an assessment of a simple, planar, pin-jointed truss structure.  This included a modal analysis to 

establish the natural frequencies of the structure.  Being a cautious student he thought he’d better conduct 

some verification tests on the axial element used to model the truss structure.  He found an analytical solution 

for a bar, fixed at one end and with uniform cross section and material properties.  He conducted a 

convergence study on this test structure in two commercial finite element systems (CS1 and CS2) starting with 

a single element and then performing uniform mesh refinement until he reach a mesh with 16 elements.  In his 

model he supported all nodes in the vertical direction and for the node at the left-hand end he also supported 

is against horizontal displacement.  His results for the fundamental frequency are shown in figure 1.  The 

frequencies have been normalised (divided) by the theoretical value which was obtained from the equation 

inset into the figure and he used the same elastic and inertial properties as for his truss structure.   

 

The results worried him since, although he saw that the finite element programmes provided results that 

converge with mesh refinement to the theoretical solution, he also saw that a single element could be in 

excess of 10% in error and he realised that using different software would provide different approximations 

with CS1 giving an upper-bound and CS2 a lower-bound to the theoretical value.  As his truss structure analysis 

had used single elements for each of the members he was concerned that the natural frequencies for the 

structure might be rather inaccurate. 

 

(a) Test structure      (b) Truss structure 

Figure 1:  Student’s structures and results 

 

The Challenge 

The challenge is to work with this student to understand why different finite element systems provide 

different approximations for coarse meshes and to provide some guidance on how he might obtain 

accurate frequencies for his truss structure.  
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Raison d’être for the Challenge 
This challenge raises an interesting question namely is the standard bar element, available in most if 

not all commercial finite element systems, able accurately to model the dynamic behaviour of truss 

structures when only a single element is used to represent each member?  The test structure 

investigated by the student indicates that by using only a single element per member one is likely to 

have some significant error in the finite element frequencies.  But whilst the test structure could be 

easily refined and supports added to prevent rigid-body hinging at the nodes (the reason for the 

vertical supports in figure 1), such simple constraints are not appropriate for the truss structure 

where each member might undergo a rigid-body rotation.   

 

Thus, whilst possible, mesh refinement of the truss structure will require some thought on how to 

prevent the intermediate nodes of each member from moving off the member centre line.  A 

different approach would be to model the members with beam elements with the moment released 

at the three joints of the structure.  This method is also considered in this response and in doing so 

demonstrates firstly, in general, that the modes achieved using bar elements are not representative 

of the real modes in the structure and secondly that the fundamental frequency of the structure 

may well be significantly less than that obtained using bar elements.   

 

Of course, the accurate recovery of frequencies and corresponding modes shapes is essential 

information to the practising engineer particularly if these natural modes are likely to be excited by 

time varying excitation forces in service.  For the structure considered such excitation forces might 

come from a seismic event or from a hoist positioned above the unsupported joint.   

Further Consideration of the Test Structure 
The inaccuracy of the frequency for the test structure of figure 1 is likely to be due to the inability of 

the bar element to model the actual mode shape.  This is seen to be the case in figure 2 where the 

theoretical shapes for modes 1 and 2 have been plotted. 

 

Figure 2:  Finite element approximations of the first two modes for the test structure (CS1) 

The theoretical mode shapes express the axial displacement, Δ�, as a function of the axial 

position,	�, in the bar and these are simple sinusoidal functions with one quarter  and three quarter 

waves, respectively, for modes 1 and 2.  The figure also shows the convergence of the (normalised) 
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frequencies with uniform mesh refinement – the result for mode 1 being identical to that show in 

figure 1. 

A number of points may be drawn from figure 2.  Firstly, with the single element model having only a 

single free degree of freedom, only a single mode of vibration exists.  The 2
nd

 mode is, thus, only 

captured when the mesh is refined to two or more elements.  Secondly, the error in the 2
nd

 mode is 

significantly greater than that for the 1
st

 mode.  This is seen particularly for the coarser meshes but it 

persists with mesh refinement with the error for the 2
nd

 mode being consistently about one order of 

magnitude (10 times) that of the 1
st

 mode.   

The reason why the 2
nd

 mode is captured less accurately than mode 1, for a given mesh, is simply 

that the mode shape is more complicated and with the bar element only having linear displacement 

capability presents a greater challenge for the finite element model.  The finite element 

displacements from the four element mesh have been added to the figure for mode 2.  The nodal 

values of displacement are accurate but the displacement between nodes is highly inaccurate.  From 

the figure it can be seen that in order to capture the second mode to the same (or better) accuracy 

of the first mode then two additional levels of mesh refinement are required – only two elements 

are required to capture the 1
st

 mode within 5% of the true value whereas eight elements are 

required for the 2
nd

 mode. 

Further investigation of the manuals for CS1 and CS2 reveal that whilst the stiffness matrices are 

identical, the mass matrices are defined differently.  CS1 uses a consistent mass matrix whereas CS2 

uses a lumped mass matrix.  As observed from figure 1 the difference in the frequencies for these 

two different forms of mass matrix is very significant for coarse meshes but whichever form is used 

both appear to converge to the same solution with increasing mesh refinement.  Whilst the default 

position for CS1 is consistent mass, there is an option to switch to lumped mass and if this is done 

then identical results to CS2 are produced indicating that the default position for CS2 is lumped 

mass. 

Solution through Constraint Equations 
It would be naïve to hope that simple mesh refinement of the truss structure would produce 

sensible results since for each additional intermediate node will introduce an additional mechanism 

whereby the node can move freely normal to the member axis.  This is indeed the case if one 

performs this sort of analysis and whilst elastic modes do still occur, the multiple rigid-body modes 

appear to pollute these so that the elastic modes are no longer realistic modes for the structure.  As 

such these mechanisms need to be prevented and this can be done through the application of 

constraints.  Unlike the simple (single point) constraints applied to the test structure to prevent 

lateral displacement, for the truss structure, where each of the members should be allowed to 

rotate freely in a rigid manner, this rotation will need to be considered and will lead to the use of 

multi-point constraints.   

 

A multi-point constraint is a linear constraint equation linking the amplitudes of various degrees of 

freedom in the model and, in this case, the coefficients and constants of the equation enforce any 

intermediate nodes to remain on the member centre line.  Thus there will be one constraint 

equation per intermediate node and the form of this equation is given in figure 3. 
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Figure 3:  Constraint equation for an intermediate node 

The way in which the constraint equation is implemented will be software dependent; however, the 

constraint equation requires that the coordinate system for the intermediate nodes is rotated into 

the local member coordinate system.  As there is potential for not correctly applying the constraint 

equation, it is sensible to perform some verification checks on the constrained model.  Two sensible 

checks are to check for under or over constraint.  If the model remains under-constrained then this 

should show up in a modal analysis through the presence of mechanisms with corresponding zero 

(or near zero) frequencies.  If the model is over-constrained then a static analysis where the 

structure is loaded with a rigid-body displacement might lead to stresses which for a properly 

constrained structure should be zero.    

Constraint equations were applied to the intermediate nodes of the truss structure for uniformly 

refined meshes with 2 to 16 elements per member.  The convergence of the first two frequencies is 

shown in figure 4 together with the mode shapes for two elements per member mesh.  The 

frequencies for the 16 element per member mesh (the most accurate values available) have been 

used for normalising the frequency.  As seen for the test structure, figure 1, the higher the mode, the 

greater the error in predicted frequency.  Interestingly, though, for the first mode the error is small 

even when a one element per member mesh is used.  Whereas for the test case the error for the 

single element was about 10%, for the truss structure it is less than 1%.  An explanation for this 

might be found by looking in further detail at the mode shapes. 

∆��=
	1 − ��


2
�−∆�� sin� + ∆�� cos�� +

	1 + ��

2

�−∆�
� sin� + ∆�

� cos�� 

Consider a member of a truss structure 

and how it moves from its initial 

(unloaded) configuration to its final 

(loaded) position.  Such a member, is 

defined by its end nodes � and �.  An 

intermediate node � is also shown and 

a constraint equation needs to be set 

up to force this node to remain on the 

member centre line.  The member in its 

initial position lies at an angle � to the 

global � axis and has a local Cartesian 

coordinate system placed at the centre 

of the element with the local � axis 

parallel to the member.  The constraint 

equation at the bottom of figure 5 

expresses the transverse displacement 

of the intermediate node (in the local 

member coordinate system) as a sum of 

four terms involving the global 

coordinates of the two end nodes.  The 

coefficients multiplying these terms are 

simply determined from the position of 

the intermediate node and the angle of 

the member.   
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Figure 4:  Convergence of frequency for truss structure modelled with constraint equations 

In figure 5 the finite element axial displacement along the two members has been plotted for the 

first three modes for the most refined mesh (16 elements per member).  It is interesting to see that 

for the first mode the axial deflections are almost linear and this gives an explanation as to why the 

frequency for this mode is captured with good accuracy even for the coarsest mesh.  The second 

mode has axial deflections that approximate the quarter sine wave and the third mode the three 

quarter sine wave rather like those for the first and second modes of the truss structure. 

 

Figure 5: Member axial displacements for the 16 element per member mesh of the truss structure  

 

√2 
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The first natural frequencies for the two individual members fixed at one end are 1297Hz and 917Hz 

respectively for the horizontal and angled members (members 1 and 2).  The corresponding mode 

shapes are the quarter sine wave shown earlier in figure 2.  The second mode of the truss structure 

has a frequency that lies between the fundamental frequencies for the individual members and 

exhibits similar mode shapes.  What is interesting, however, for the truss structure is that a new 

fundamental mode with a much lower frequency has appeared.   

Whilst the constraint equations have been checked for the models of the truss structure, it would be 

useful to find some independent way of verifying these results before accepting them as truth.  One 

approach might be to model the structure using planar beam elements and releasing the moments 

at the joints of the structure.  Such models would not require constraint equations and is considered 

further in the next section.   

Solution through Beam Elements 
The planar beam element in CS1 has three degrees of freedom per node (two in-plane 

displacements and the out of plane rotation) and it allows the cross-sectional properties (area and 

second moment of area) to be specified independently.  It is also possible to switch off the influence 

of shear deformation and for the purpose of this study this will be done.  With the addition of the 

bending capability, the number of potential modes of vibration is increased over the same model 

using bar elements.  However as the element formulation includes that of the bar element (and this 

may be confirmed by analysing the test structure with the beam element, one might expect, in 

addition to the bending modes, to recover the axial modes predicted by the bar element model of 

the truss structure. 

The truss structure was modelled with 200 beam elements per member which ensured accuracy on 

the frequency of within 1% for modes up to 1600Hz.  In this frequency range the model using bar 

elements revealed only two modes.  However the beam model produces 22 modes of vibration as 

shown in figure 6 where the two mode shapes for the bar model are shown (from the two element 

per member model) together with the beam modes either side of the bar modes.   

 

Figure 6:  Frequencies and modes for truss structure modelled with beams and bars 
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In addition to producing more modes of vibration (in the frequency range considered), the results 

for the beam model do not appear to include the pure axial modes seen in the bar model with the 

closest modes indicating short wavelength bending modes.  Such ‘mixing’ of modes is common in 

structural analysis but it shows that the modes found from the analysis using bar elements do not 

occur in practice and not only that, but the idea that the bar element model would capture the 

fundamental mode is mistaken; the lowest frequency for the beam element model is significantly 

lower than that predicted by the bar element model.  It is clear then that whilst the bar element 

model might be satisfactory for determining member forces under a static load, it is totally 

inappropriate for doing so under a dynamic loading scenario.   

Having gone down the line of using bar elements and constraint equations it would still be good to 

verify that this model, the bar element model, was indeed correct.  One way that this might be done 

is to force the beam model to recover the axial modes and this may be done by increasing the 

bending stiffness so that the bending modes have frequencies higher than the axial modes.  As 

mentioned the cross-sectional area and the second moment of area may be input to CS1 

independently and so this should be a simple matter of increasing the second moment of area whilst 

holding the cross-sectional area constant.  A parameter that relates the two section properties is the 

radius of gyration and in figure 7 the way in which the first two frequencies vary with radius of 

gyration is shown.  It should be noted, when looking at figure 7, that the mode shapes will be varying 

with radius of gyration.   

 

Figure 7: Frequency variation with radius of gyration for beam model of truss structure 

In considering how the frequencies of the truss structure varied with radius of gyration, it was 

discovered that when using consistent mass, the axial modes could not be recovered with the 

frequencies rising to that of the axial modes but then decreasing as the radius of gyration was 

further increased.  When, however, lumped mass was used, the frequencies and indeed mode 

shapes did converge, with increasing radius of gyration, to those produced by the bar element 

model.  Thus the bar element model using constraint equations has been verified.  The reason why 
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the consistent mass beam model did not converge to the results produced by the bar element model 

is that the consistent mass matrix includes terms to model the rotary inertia of the beam and whilst 

the stiffness of the beam increases with radius of gyration, so does the inertia associated with the 

bending modes but it does so at a different rate and thus leads to the quadratic curve shape shown 

in the figure.  The lumped mass matrix for CS1 is diagonal and includes no attempt to model the 

rotary inertia of the beam element. 

Closure 
To a practising structural engineer who has been involved in the design and analysis of pin-jointed 

structures, this challenge might be considered somewhat naïve since he/she will probably realise 

that whilst a static analysis of a truss structure using bar elements is adequate for predicting the 

structural response to static loading, this is not generally the case where the loads are dynamic; for 

the dynamic case,  the axial modes of vibration form only a part of the whole story and indeed are 

generally not distinct when member bending is considered.  Nonetheless working through the 

challenge has provided the sort of learning experience a graduate engineer might find valuable in 

that it clearly exposes the reason why the correct dynamic behaviour of pin-jointed structures 

should not be expected to be predicted using simple bar element models.   

The challenge has also revealed the effect of different mass approximations on the results of a 

modal analysis.  Whereas the consistent mass approach is exact, the lumped mass is only an 

approximation of the truth and this approach probably hails from days, now past, where the 

computational advantage of working with a diagonal mass matrix where considered valuable.  Whilst 

the lumped mass approximation was useful in this challenge response to provide verification that 

the constraint equations in the bar element model of the truss structure were correctly applied, the 

true behaviour would be that obtained using a consistent mass matrix.  It is also worth noting that, 

whilst the consistent mass matrix is uniquely defined, different finite element systems may adopt 

different approaches to mass lumping.  Indeed, whereas the lumped mass matrix for the beam in 

CS1 does not include rotary inertia terms, the same element in CS2 does.   

It should, of course, be pointed out that the term ‘mass matrix’ is a little inaccurate since it includes 

both mass (translational inertia) and rotational inertia terms.  It might be that this inaccuracy has 

something to do with a commonly seen mistake made in finite element analysis where the analyst 

fails to account for the rotary inertia of a non-structural component whilst including the mass of this 

component in the finite element model.  This is, clearly, a risky form of approximation since any 

modes of vibration that involve rotation of the part will then generally have frequencies that are 

over-predicted. 

  


