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Abstract 

 
Recent developments of hybrid-stress elements are presented suitable for 
modelling axisymmetric problems when a strong form of equilibrium is 
required. Potential instability problems due to spurious kinematic modes 
are shown to be avoided by appropriate selection of statically admissible 
stress fields and edge displacements, and by the use of the macro-element 
concept. This paper is restricted to elements for problems where a hole 
occurs along the axis of symmetry; simple numerical examples are 
included to illustrate element characteristics, to verify the associated 
software, and to compare with conventional conforming displacement 
models. Suggestions are included for future work to develop axisymmetric 
hybrid models further. 

 
1 Introduction 

Finite element models formed from hybrid-stress (HS) equilibrium elements 
produce statically admissible (SA) stress fields which enable, inter alia,  safe lower-
bound solutions to be achieved in the limit analysis of problems in continuum 
mechanics.  This property is not shared with models based on conventional 
displacement elements, or normally with models involving the hybrid elements based 
on internal SA fields and frame functions for boundary displacements [1]. The 
formulation presented in this paper is based on later hybrid concepts which rely on 
independent edge displacement fields to enforce a stronger form of equilibrium [2]. 

 
 The robust formulation of an HS element requires elimination or control of any 

spurious kinematic modes (skm’s) that may exist.  For two- and three-dimensional 
continua and for plate-bending problems this has been achieved by assembling macro 
elements from groups of triangular primitive elements – see [3-5] for example.  Whilst 
skm’s may still exist in the interior of such an assembly, they do not affect the 
exterior edges of the macro and, therefore, do not lead to inadmissible configurations 
of boundary tractions which can occur in the presence of skm’s.  In order to extend 
the range of available HS elements, and because of its practical significance in the 
pressure vessel and turbo-machinery industries, an axisymmetric element has been 
developed and this forms the subject of the present paper.  
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The paper proceeds in Section 2 to review the hybrid-stress formulation  in the 
context of axisymmetric problems before detailing a primitive element based on 
rational stress fields in Section 3. The number and nature of skm’s for a range of SA 
stress fields is established for the triangular primitive, and this is followed in Section 
4 by consideration of a triangular macro-element. It is there demonstrated that skm’s 
are suppressed and some simple examples are presented. Section 5 contains 
conclusions and recommendations for future work. 
 
2 Hybrid formulation 
    In the context of axisymmetric problems, hybrid stress fields require four 
components which must be SA. These are represented in Equation (1) where {s} 
denotes the independent stress parameters. 
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   In the absence of body forces, the local differential equations of equilibrium are 
given by Equations (2) and (3). Equilibrium in the direction of the axis of symmetry z 
requires: 
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Equilibrium in the radial direction requires: 
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The stress component σθ  is then dependent on σr and τ. 
   Hybrid displacement fields {δ} are defined along each edge of an element in 
Equation (4) where {v} denotes the independent edge displacement parameters. 
 

{ } [ ]{ }vV=δ                                                            (4) 
 
Edge tractions {t} are defined as forces per unit length, and these equilibrate with 
internal stresses according to Equation (5). 
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In Equation (5) an element is considered as a wedge with thickness proportional to 
radius r, i.e. thickness h = r⋅dθ when the wedge subtends an angle dθ at the axis of 
symmetry. σn and σt are the normal and tangential components of stress at a point on 
the edge of an element which are obtained from the four internal stress components by 
use of the transformation matrix [T].  
   Then the work done on the boundary of an element can be expressed by Equation 
(6), where t in dt denotes the tangential coordinate on the boundary. 
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Without loss of generality it is assumed that dθ = 1, and then [D] and equilibrating 
edge traction modes {g} dual to edge displacement modes {v} are defined by 
Equation (7). 
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The nullspace of [D] contains the hyperstatic modes i.e. internal stresses with zero 
tractions. Generalised deformations {e} dual to {s} are defined by Equation (8). 
 

{ } [ ] { }vDe T=                                                       (8) 
 
so that the boundary work in Equation (6) is also given by {s}T{e}. The nullspace of 
[D]T  contains the  kinematic modes i.e. modes of edge displacements which do no 
work with any of the stress fields – including rigid body and spurious kinematic 
modes. 
   The natural flexibility matrix for an element is defined in Equation (9). 
 

[ ] [ ] [ ][ ]∫∫= rdrdzSfSF T   where {ε} = [f]{σ}                                  (9) 

 
When general tractions { }t  are prescribed for an edge Γt , they are represented by the 
traction vector { }

t
g Γ , dual to { }

t
vΓ , defined by Equation (10). 
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Compatibility and equilibrium equations for a hybrid element excited by edge 
tractions (in the absence of body forces or initial strains) are collected in Equation 
(11). 
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where  {g}  represents the total prescribed tractions typified by the edge components 
in Equation (10). 
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3 Triangular primitive hybrid elements 
 
3.1 A family of elements based on rational polynomials for stress fields  
   Stress fields are defined as rational polynomials in the form 
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 where f and g are polynomials of degree (p + 1) and p respectively. 
   The rationale behind this choice of stress fields is as follows: if polynomials are 
limited to the form g(r,z) as in the case of membrane or planar stress equilibrium 
models [4], then spurious kinematic modes exist both for primitive and for macro-
elements. For example, when p = 0 for both stress and displacement fields, there are 3 
spurious kinematic modes for the primitive and the triangular macro which involve 
the external edges. When p = 1 for both fields there are 5 and 3 spurious kinematic 
modes for the primitive and the macro respectively. These numbers will only tend to 
increase if the edge displacements are increased in degree to (p + 1) in order to 
enforce co-diffusivity of tractions. As will be demonstrated in Section 4, the inclusion 
of the rational polynomial f(z)/r in the stress fields, and polynomials of degree (p + 1) 
for the edge displacement fields removes spurious kinematic modes  from the macros, 
at least for elements of degree ≤ 3. 
 
   It should however be noted that if an element touches the axis of symmetry, then r = 
0 at such contact points. In this case the stress fields become singular, and the natural 
flexibility matrix involves strongly singular integrals. Alternative formulations for 
elements in such positions may involve (a) excluding the rational terms and 
attempting to arrange the mesh geometry in such a way as to prevent spurious 
kinematic modes from propagating through the mesh; or (b) incorporating simplifying 
concepts from hybrid stress boundary element methods [6]. These alternatives will be 
considered in a future paper. 
 
3.1.1 A basis for statically admissible stresses. 
   According to Equation (12) rational polynomial stress fields can be expressed as 
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σr  contains (p + 2) + 0.5(p + 1)(p + 2) = 0.5(p + 2)(p + 3)  terms. Similar expressions 
are used for components σz , τ, and σθ with coefficients a replaced by b, c and d 
respectively leading to 2(p + 2)(p + 3) independent stress fields. The total number of 
independent SA stress fields is then reduced since (i) σθ is dependent on the other 
three components according to equilibrium Equation (3), and (ii) equilibrium 
Equation (2)  leads to constraints which are developed as follows: 
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 The coefficients must be related by the 0.5(p + 1)(p + 2) equations: 
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This leaves the total number of independent SA stress fields to be defined by Equation 
(15).  
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 Independent stress components may be selected to correspond to the coefficients of 
σr , σz and the coefficients of τ in the function fτ, and then the coefficients of gτ and σθ 
become dependent. It should be noted from equilibrium Equation (3) that: 
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which is a simple polynomial form which excludes all rational terms. 
 
3.1.2 A basis for edge displacements 
   Edge displacements are defined by complete polynomials of degree (p + 1) to 
ensure co-diffusivity of tractions in the form (rσ). 
 
Axisymmetric problems of disks with central holes loaded by uniform radial pressures 
create radial and circumferential stress fields involving 1/r2 terms as defined in the 
Lamé equations [7,8]. Thus it is tempting to include f(z)/r2 terms in the stress field 
polynomials, however this implies the need for rational displacement and traction 
functions for edges, and the present paper restricts attention to the simpler polynomial 
forms. 
 
3.2 Spurious kinematic and hyperstatic modes 
   The spurious kinematic and hyperstatic modes are contained in or form the 
nullspaces of [D]T and [D] respectively as stated in Section 2. As has been noted in 
[9], the numbers of these modes cannot be determined simply from counting the 
numbers of independent stress and displacement fields in a hybrid element; 
knowledge of  rank[D] is also necessary. This has been determined numerically by 
singular value decomposition of [D] for 0 ≤ p ≤ 3, and the dimensions ns, nhyp, nv, and 
nskm of the vector spaces corresponding to the statically admissible stress fields, the 
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hyperstatic stress fields, edge displacements, and the spurious kinematic modes are 
presented in Table 1. These dimensions are related by Equation (17) where nrbm 
denotes the number of independent rigid body modes. For the axisymmetric element 
there is only one such mode, and this involves translation in the z direction. 
 

hyprbmsvskm nnnnn +−−=                                                 (17) 
 

p ns nhyp nv nskm nrbm 

0 8 0 12 3 1 
1 15 1 18 3 1 
2 24 4 24 3 1 
3 35 9 30 3 1 

 
Table 1: Dimensions of stress and displacement spaces. 

 
   A single hyperstatic mode exists when p = 1, and this is illustrated in Figure 1 with 
the aid of a family of stress trajectories. The individual stress components for this 
particular element are given in Equation (18). 
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Figure 1: Stress trajectories for the hyperstatic stress field when p = 1. 
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4 

4 Macro-elements 
   The experience with membrane and plate elements [4-6] indicates that the malignant 
spurious kinematic modes which produce an unstable finite element model may be 
suppressed by combining primitive elements into macro-elements e.g. triangular 
macro-elements containing three primitive triangular elements. 
 
4.1 Triangular macro-elements 
   The general arrangement of a macro-element is illustrated in Figure2. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2: General arrangement of a macro-element. 
 
   The macro-element has three external and three internal edges, and its stability is 
investigated by determining the rank of the matrix [D] assembled for the macro. This 
has been done numerically for a macro having corner coordinates (1,1), (3,1.5), and 
(2,3), and an internal node at (2,2). This procedure confirms that the macro is 
completely free of spurious kinematic modes  for the same values of p considered 
in Table 1. The number of hyperstatic modes for the macro is given in Table 2.  
 
Degree p 0 1 2 3 
nhyp 13 22 37 58 

 
Table 2: Number of hyperstatic stress fields for the triangular macro-element. 
 
4.2 An illustrative problem 
   Some simple example problems are included in this section based on the single 
macro-element in Figure 3.  The first three examples are intended to confirm the 
feasibility of the hybrid element, and to verify the program that has been developed 
for this macro-element. 
 
To these ends the macro-element with p = 0 is loaded by edge tractions which 
equilibrate with the Trefftz type stress fields contained within the stress space, i.e.  
 

3 

2 

1 

z   axis of symmetry 

r 

4

5 
6 

1 

2 

3



8            Numerical Methods in Continuum Mechanics 2003, Žilina, Slovak Republic 

{ }





















=

0
0
1
0

σ  (case 1),  





















0
1
0
1

 (case 2),  and  





















r1
0
0
0

 (case 3).                       (19) 

 
   Trefftz type stress fields are not only SA, but also the corresponding strains are 
compatible. The implications of this are that the recovered stress fields should be 
correct, and the recovered edge displacements should also be correct for the modes 
included by the complete polynomials. The correct stress fields were recovered in 
each case.  In cases 1 and 2  the strain fields are constant and the correct displacement 
fields are linear, and are defined to within a rigid body mode in Equations (20) and 
(21). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3: Macro-element for the example problems. 
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The recovered edge displacements conform with these displacement fields, and they 
are illustrated in Figure 4. 

 
   However in case 3 the linear edge displacements for the hybrid element cannot 
conform with the correct displacement field, which is given in Equation (22) to within 
a rigid body displacement in the z direction.  
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Figure 4: Edge displacements for cases 1 and 2. 
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Figure 5: Edge displacements for case 3 for the hybrid macro-element. 
 
   The edge displacements for case 3 are illustrated in Figures 5 and 6. Although there 
are gaps at two of the corners of the macro it should be noted that the edge 
displacements are correct in so far as the constant and linear modes of displacement 
are concerned. This is to be expected when the natural flexibility matrix is formed by 
very accurate integration schemes. In the present case 10 point Gauss integration was 
used for each edge after using Green’s theorem to transform area integrals to 
boundary integrals. 
 
   The fourth example loads the same macro-element with a pressure of 100 units on 
the edge with r = 1, and with E = 210, ν = 0.3. This example simulates a torus with a 
triangular cross-section subjected to an internal pressure. Results for strain energy for 
the torus were obtained for p in the range 0 to 3, and for a displacement model based 
on the same geometrical arrangement of primitive elements but with the degree of the 
displacement field in the range 2 to 5, and also for a reference solution based on 
displacement model with a very fine mesh. Results are given in Table 3.  
 

p Hybrid macro-element 
Strain energy 

Displacement model 
Strain energy 

0 1.198  
1 1.109  
2 1.078 0.995 
3 1.070 1.037 
4  1.055 
5  1.062 
Reference solution  1.0679 

 
Table 3: Strain energies of equilibrium and conforming models scaled by 106. 

r

z
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Figure 6: Edge displacements from Trefftz and hybrid element solutions scaled by the 
shear modulus. 
 
5 Conclusions 
• An equilibrium hybrid macro-element in triangular form is feasible for 

axisymmetric models without spurious kinematic modes when the stress fields are 
based on rational polynomials. The absence of such modes has been demonstrated 
for polynomials of low degree. Further work is intended to consider the stability 
of triangular and quadrilateral macro-elements for general higher degree 
formulations, and when r2 is included in the denominator of the stress fields. 

 
• Initial comparisons with conforming displacement models indicate that, for linear 

elastic behaviour, better quality stress fields can be obtained from equilibrium 
models of similar degree. 

 
• The present paper has considered elements for which r > 0 at all points. Further 

work is necessary to include elements which touch the axis of symmetry and 
where the use of rational polynomials may lead to singularities. 

 
• Axisymmetric elements in general tend to lead to ill-conditioned equations when 

their size is reduced compared with their average radial coordinates [10]. Initial 
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investigations with the present equilibrium elements confirm this trend especially 
when the degree is increased. Further work is intended to investigate the potential 
limitations caused by this effect, and how the formulation may be amended so as 
to improve conditioning. 

 
• Further work is also proposed to include other forms of excitation, e.g. inertia 

body forces and thermal effects which are of particular concern in the analysis of 
turbo-machinery. 
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