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Abstract

Recent developments of hybrid-stress elements are presented suitable for
moddling axisymmetric problems when a srong form of equilibrium is
required. Potential ingtability problems due to spurious kinematic modes
are shown to be avoided by agppropriate selection of daticaly admissble
dress fields and edge displacements, and by the use of the macro-dement
concept. This paper is restricted to elements for problems where a hole
occurs dong the axis of symmetry; smple numericd examples ae
included to illusrate eement charecteridtics, to verify the associated
software, and to compare with conventiond conforming displacement
modds. Suggestions are included for future work to develop axisymmetric
hybrid models further.

1 Introduction

Finite dement modds formed from hybrid-dress (HS) equilibrium eements
produce daticdly admissble (SA) dress fidds which endble, inter alia, sfe lower-
bound solutions to be achieved in the limit andyss of problems in continuum
mechanics.  This property is not shared with modes based on conventiond
disolacement dements, or normdly with modds involving the hybrid dements based
on intend SA fidds and frame functions for boundary disolacements [1]. The
formulation presented in this paper is based on later hybrid concepts which rely on
independent edge displacement fidds to enforce a stronger form of equilibrium [2].

The robust formulation of an HS dement requires diminatiion or control of any
spurious kinematic modes (skm's) tha may exis. For two- and three-dimensond
continua and for plate-bending problems this has been achieved by assembling macro
elements from groups of triangular primitive dements — see [3-5] for example. Whilst
skm's may dill exig in the interior of such an assembly, they do not affect the
exterior edges of the macro and, therefore, do not lead to inadmissible configurations
of boundary tractions which can occur in the presence of skm's. In order to extend
the range of avalable HS dements, and because of its practical dgnificance in the
pressure vessd and turbo-machinery indudries, an axisymmetric dement has been
developed and this forms the subject of the present paper.
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The paper proceeds in Section 2 to review the hybrid-gress formulaion in the
context of axisymmetric problems before detaling a primitive dement based on
rational dress fields in Section 3. The number and nature of skm's for a range of SA
dress fidds is edtablished for the triangular primitive, and this is followed in Section
4 by condderation of a triangular macro-element. It is there demongrated that skm's
ae suppressed and some sSmple examples are presented. Section 5 contans
conclusions and recommendations for future work.

2 Hybrid formulation

In the context of axisymmetric problems hybrid dress fidds require four
components which must be SA. These are represented in Equation (1) where {s}
denotes the independert stress parameters.
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In the absence of body forces, the locad differentid equations of equilibrium are
given by Equations (2) and (3). Equilibrium in the direction of the axis of symmetry z
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The stress component s isthen dependent on s and't.
Hybrid digolacement fidds {d} ae defined dong each edge of an dement in
Equation (4) where{v} denotes the independent edge displacement parameters.

{d}=viv} (4)

Edge trections {t} are defined as forces per unit length, and these equilibrate with
interna stresses according to Equation (5).

fh=hi%ry=rocalSks where S]=frls ®
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In Equation (5) an dement is conddered as a wedge with thickness proportiona to
radius r, i.e. thickness h = rxq when the wedge subtends an angle dq at the axis of
symmetry. s, and s are the norma and tangentiad components of stress a a point on
the edge of an dement which are obtained from the four interna stress components by
use of the transformation matrix [T].

Then the work done on the boundary of an dement can be expressed by Equation
(6), wheret in dt denotes the tangential coordinate on the boundary.

&) fhot = 6 éwavr [é]rdthg{s} Wi ={bI'  ©

Without loss of generdity it is assumed that dg = 1, and then [D] and equilibrating
edge traction modes {g} dud to edge displacement modes {v} ae defined by
Equetion (7).

[D]= gv[Sket and {g}=[DJs) @)

The nullspace of [D] contains the hypergatic modes i.e. internal stresses with zero
tractions. Generalised deformations{e} dual to {s} are defined by Equation (8).

{g=[D]"{v} 8)

0 that the boundary work in Equation (6) is dso given by {5} '{€}. The nullspace of
[D]" contains the kinematic modes i.e. modes of edge displacements which do no
work with any of the dress fidds — incuding rigid body and spurious kinematic
modes.

The naturd flexibility matrix for an dement is defined in Equation (9).

[F]=glSI'[f]Skdrdz where{e} =[fl{s} 9)

When generd tractions {f} are prescribed for an edge G , they are represented by the
traction vector {g, }, dudl to {v,, |, defined by Equation (10).

{0} = T it (10)

Compatibility and equilibrium equations for a hybrid dement excited by edge
tractions (in the absence of body forces or initid strains) are collected in Equation
(12).
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where {g} represents he total prescribed tractions typified by the edge components
in Equation (10).
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3 Triangular primitive hybrid elements

3.1 A family of elements based on rational polynomialsfor stressfields
Stressfidds are defined asrationd polynomiasin the form

s =2x1(2)+g(r.2) (12)

wheref and g are polynomids of degree (p + 1) and p respectively.

The rationde behind this choice of dress fidds is as follows if polynomids ae
limited to the form g(r,2) as in the case of membrane or planar dress equilibrium
models [4], then spurious kinematic modes exist both for primitive and for macro-
elements. For example, when p = 0O for both stress and displacement fields, there are 3
spurious kinematic modes for the primitive and the triangular macro which involve
the externd edges. When p = 1 for both fields there are 5 and 3 spurious kinematic
modes for the primitive and the macro respectively. These numbers will only tend to
increase if the edge displacements are increased in degree to (p + 1) in order to
enforce co-diffusvity of tractions As will be demondrated in Section 4, the incluson
of the rationd polynomid f(2)/r in the stress fidds, and polynomids of degree p + 1)
for the edge displacement fields removes spurious kinematic modes from the macros,
at least for dements of degree £ 3.

It should however be noted that if an element touches the axis of symmetry, then r =
0 a such contact points. In this case the dress fields become singular, and the natura
flexibility matrix involves drongly dngular integrds  Alterndive formulations  for
dements in such pogtions may involve (@ exduding the ratond terms and
attempting to arange the mesh geometry in such a way as to prevent spurious
kinematic modes from propagating through the mesh; or (b) incorporating smplifying
concepts from hybrid stress boundary eement methods [6]. These dternatives will be
considered in afuture paper.

3.1.1 A basisfor statically admissible stresses.
According to Equation (12) rationa polynomid stress fieds can be expressed as

a a,,r"z" with limits on the exponents (m+n)£p, - 1EMEp, 0£nE p,eg.
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or 5, =1,(2)+9,(r.2).

Sy contains@ +2) + 0.5(p+ L(p+2) =05(p + 2)(p +3) terms. Similar expressons
are used for components s, , t, and sq with coefficients a replaced by b, c and d
respectively leading to 2(p + 2)(p + 3) independent stress fields. The total number of
independent SA  dress fidlds is then reduced since (i) Sq is dependent on the other
three components according to equilibrium Equation (3), and (i) equilibrium
Equation (2) leadsto constraints which are developed as follows:
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The coefficients must be related by the 0.5(p + 1)(p + 2) equations:

b, +C=0

by, +2c,=0
2b,, + ¢y, =0 (14)

(p+1)b., ., +6, =0

This leaves the totad number of independent SA dress fidds to be defined by Equation
(15).

n, =2(p+2)(p+3)- 0.5(p+2)(p+3)- 05(p+1)(p+2)=(p+2)(p+4) (15
Independent stress components may be sdlected to correspond to the coefficients of

Sy, Sz and the coefficients of t in the function f;, and then the coefficients of g: and s
become dependent. 1t should be noted from equilibrium Equation (3) that:

a7 I 1z Nz

_lrg,), ¥, T (16)

which isasmple polynomid form which excdludes dl rationd terms.

3.1.2 A basisfor edge displacements
Edge disilacements are defined by complete polynomids of degree (p + 1) to
ensure co-diffugvity of tractionsin the form (rs).

Axisymmetric problems of disks with central holes loaded b%/ uniform radid pressures
cregte radid and crcumferentiad dress fidds involving 1/r“ terms as defined in the
Lamé equations [7,8]. Thus it is tempting to incdude f(2)/r? terms in the stress fidd
polynomids, however this implies the need for rational displacement and traction
functions for edges, and the present paper redricts attention to the smpler polynomia
forms.

3.2 Spurious kinematic and hyper static modes

The spurious kinematic and hyperstatic modes are contaned in or form the
nullspaces of [D]" and [D] respectively as stated in Section 2. As has been noted in
[9], the numbers of these modes cannot be determined smply from counting the
numbers of independent dress and displacement fidds in a hybrid dement;
knowledge of rank[D] is dso necessary. This has been determined numericdly by
sngular value decompostion of [D] for 0 £ p £ 3, and the dimensions ns, Nhyp, Ny, and
Ng«m Of the vector gpaces corresponding to the daticaly admissble dress fieds, the
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hyperstatic dtress fidlds, edge displacements, and the spurious kinematic modes are
presented in Table 1. These dimensons are related by Equation (17) where nipm
denotes the number of independent rigid body modes. For the axisymmetric eement
there is only one such mode, and this involves trandation in the z direction.

Ngm =Ny = Ny - Ny + nhyp (17)
P Ns I”'hyp Ny Nskm Nrbm
0 8 0 12 3 1
1 15 1 18 3 1
2 24 4 24 3 1
3 35 9 30 3 1

Table 1: Dimensions of stress and displacement spaces.

A dngle hypergatic mode exists when p = 1, and this is illustrated in Figure 1 with
the ad of a family of dress trgectories. The individua dress components for this
particular ement are given in Equation (18).

(18)

A\ (1,1)

(1"1)

Figure 1. Stresstrgectories for the hyperstatic stressfiedld when p = 1.
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4 M acr o-elements

The experience with membrane and plate eements [4-6] indicates that the maignant
spurious kinematic modes which produce an undable finite dement modd may be
suppressed by combining primitive dements into  macro-dements eg. triangular
macro-eements containing three primitive triangular dements.

4.1 Triangular macro-elements
The genera arrangement of amacro-dement isilludrated in Figure2.

2 |axis of symmetry

Figure 2: Generd arrangement of a macro-eement.

The macro-dement has three externd and three internal edges, and its dability is
investigated by determining the rank of the matrix [D] assembled for the macro. This
has been done numericdly for a macro having corner coordinates (1,1), (3,1.5), and
(23), and an interna node at (2,2). This procedure confirms that the macro is
completely free of spurious kinematic modes for the same vaues of p considered
in Table 1. The number of hypergtatic modes for the macro isgivenin Table 2.

Degree p 0 1 2 3
nhyp 13 22 37 58

Table 2: Number of hyperdtatic sressfields for the triangular macro-element.

4.2 An illustrative problem

Some dmple example problems are included in this section based on the dingle
macro-dement in Fgure 3. The firg three examples are intended to confirm the
feashility of the hybrid dement, and to verify the program tha has been developed
for this macro-element.

To these ends the macro-dement with p = O is loaded by edge tractions which
equilibrate with the Trefftz type stress fields contained within the stress space, i.e.
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Trefftz type dress fidds ae not only SA, but aso the corresponding strains are
compdtible The implications of this are that the recovered dress fidds should be
correct, and the recovered edge displacements should aso be correct for the modes
included by the complete polynomiads. The correct stress fields were recovered in
each case. Incases 1 and 2 the drain fields are constant and the correct displacement
fidds are linear, and are defined to within a rigid body mode in Equations (20) and
(22).

(1.1)

(1" 1)

Figure 3: Macro-eement for the example problems.
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The recovered edge displacements conform with these displacement fidds, and they
areillugrated in Figure 4.

However in case 3 the linear edge displacements for the hybrid dement cannot

conform with the correct displacement fidd, which is given in Equation (22) to within
arigid body digplacement in the z direction.

1 11 [
%vv{) E%2(1+n Iogerf\; (22)
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Figure 4: Edge displacementsfor cases 1 and 2.
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Figure 5: Edge displacements for case 3 for the hybrid macro-dement.

The edge displacements for case 3 are illustrated in Figures 5and 6. Although there
ae gaps a two of the corners of the macro it should be noted tha the edge
displacements are correct in so far as the constant and linear modes of displacement
are concerned. This is to be expected when the naturd flexibility matrix is formed by
very accurate integration schemes. In the present case 10 point Gauss integration was
used for each edge dafter usng Green's theorem to trandform area integras to
boundary integrals.

The fourth example loads the same macro-dement with a pressure of 100 units on
the edge with r = 1, and with E = 210, n = 0.3. This example smulates a torus with a
triangular cross-section subjected to an internd pressure. Results for dsrain energy for
the torus were obtained for p in the range 0 to 3, and for a displacement mode based
on the same geometrical arrangement of primitive dements but with the degree of the
displacement field in the range 2 to 5, and aso for a reference solution based on
displacement modd with a very fine mesh. Results are givenin Table 3.

p Hybrid macro-dement Displacement mode
Strain energy Strain energy

0 1.198

1 1.109

2 1.078 0.995

3 1.070 1.037

4 1.055

5 1.062

Reference solution 1.0679

Table 3: Strain energies of equilibrium and conforming models scaled by 10°.
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Figure 6: Edge displacements from Trefftz and hybrid dement solutions scaled by the
shear modulus.

5 Conclusions
An equilibrium hybrid macro-dement in  triangular  form is feesble for
axisymmetric modds without spurious kinematic modes when the dtress fields are
basad on rational polynomias. The absence of such modes has been demonsirated
for polynomiads of low degree. Further work is intended to consder the stability
of triangular and quadrilaerd macro-dements for generd higher degree
formulations, and when r? isincluded in the denominator of the Stressfields.

Initid comparisons with conforming displacement modds indicate that, for linear
eadic behaviour, better qudity stress fidds can be obtaned from equilibrium
models of smilar degree.

The present paper has consdered dements for which r > 0 a dl points. Further
work is necessay to include dements which touch the axis of symmetry and
where the use of rationd polynomias may leaed to singularities.

Axisymmetric dements in generd tend to lead to ill-conditioned equations when
their sze is reduced compared with their average radid coordinates [10]. Initia
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investigations with the present equilibrium dements confirm this trend especidly
when the degree is increased. Further work is intended to investigate the potentia
limitations caused by this effect, and how the formulation may be amended so0 as
to improve conditioning.

Further work is dso proposed to include other forms of excitation, eg. inertia
body forces and thermd effects which are of particular concern in the andyds of
turbo-mechinery.
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