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SUMMARY 
This paper illustrates a method whereby a family of robust equilibrium elements can be formulated in 
a general manner. The effects of spurious kinematic modes, present to some extent in all primitive 
equilibrium elements, are eliminated by judicious assembly into macro-equilibrium elements. These macro- 
elements are formulated with sufficient generality so as to retain the polynomial degree of the stress field as 
a variable. Such a family of macro-elements is a new development, and results for polynomials of degree 
greater than two have not been seen before. The quality of results for macro-equilibrium elements with 
varying degrees of polynomial is demonstrated by numerical examples. 
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1. INTRODUCTION 

The concepts of equilibrium elements and spurious kinematic modes are here introduced. 
Equilibrium elements offer possibilities of providing alternative solutions which give considerable 
scope for taking advantage of their results: e.g. dual analyses become possible which can provide 
bounds on quantities of interest such as the discretization errors, ‘safe’ designs of structures can be 
achieved when the lower bound theorem of plasticity is applicable. They have not however gained 
widespread popularity due to their relative complexity, the difficulties of incorporating into 
conventional software, and the more general problem with spurious kinematic modes. 

The main tasks in formulating equilibrium elements are those of defining stress fields in 
elements, and assembling the elements. One approach’ - has been to utilize stress functions (such 
as Airy stress functions) interpolated from nodal values in a similar way to displacement fields. 
The principle of minimum complementary energy is then appropriate in formulating equations 
for a system of elements. However, the imposition of boundary conditions is not so straightfor- 
ward. An alternative approach defines stress fields directly within elements (e.g. as polynomial 
functions), and also introduces ‘secondary’ quantities in the form of displacement connection 
variables associated with element b o u n d a r i e ~ . ’ * ~ * ~ - ~  Elements defined in this way are generally 
termed ‘hybrid’ elements. The displacement variables allow assembly to proceed, for example, 
with a stiffness method. Alternatively a force method is feasible’.* if dual force connection 
variables are defined. 
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Displacement variables can be associated with displacements of discrete points, e.g. conven- 
tional nodes, or nodes associated only with the sides of elements, or modes of displacement of the 
sides of elements. A strong form of element interface equilibrium is not generally achieved when 
corner node displacements are included. This is due to the fact that the corresponding nodal 
forces are not directly associated with interfaces. However, diffusion of tractions and complete 
equilibrium may be locally enforced by using appropriate side displacement modes. The side 
displacement modes and internal stress fields defined for an element may give rise to spurious 
kinematic modes. These are modes of relative displacements of the sides of an element which can 
occur without the presence of side tractions. These spurious modes are also referred to as zero 
energy modes, and they produce an element stiffness matrix which is rank deficient. This situation 
is similar to that which can occur with conventional displacement elements due to the use of 
reduced integration. For example the 8-noded isoparametric serendipity element with 2 x 2 
Gauss quadrature has the spurious kinematic mode in the form of an hourglass.' However, unlike 
the case with displacement elements where such modes rarely propagate through a finite element 
mesh, the spurious modes with equilibrium elements are more common and they are more likely 
to propagate. 

The main challenge with equilibrium elements is to be able to achieve complete equilibrium 
without hindrance from spurious kinematic modes. Most elements based on polynomial fields are 
bedevilled by these modes! In this paper it is intended to present an approach based on 
decomposing each element into an assembly of primitive elements to form a macro-element. For 
the primitive elements the internal stress fields and the modes of side displacements are con- 
sidered in polynomial forms. Using these stress fields complete equilibrium may be achieved with 
specified boundary tractions. The concept of macro-elements 

(1) ensures that the effect of spurious kinematic modes can be eliminated from an arbitrary 

(2) enables elements of any degree to be formulated in a simple and efficient way. 
finite element mesh, and 

Whilst the basic idea of using macro-elements is not new,' the proposed approach is more 
general, and should allow for a rethinking on the usual concepts for the use of equilibrium 
elements. 

2. FORMULATION OF A PRIMITIVE EQUILIBRIUM ELEMENT 

The formulation summarized here is based on that presented in References 4 and 10. In each 
element the stress field is approximated by a linear combination of independent continuous 
functions which satisfy the equilibrium equations with zero body forces. A stress field IS is 
expressed as 

IS = s s  (1) 

where the columns of S represent ns independent stress fields, and the vector s contains ns stress 
field parameters. 

The boundary displacements of each element are approximated by a linear combination of 
independent functions. These functions describe the modes of displacement of each side i as 
a separate entity, so that compatibility of displacements of the different sides of an element is not 
an a priori assumption. The displacement field ui for side i is expressed as 

ui = vivi 
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where the columns of Vi represent the independent modes of displacement of side i. The 
displacement u of an arbitrary point on a side of an element can then be expressed as 

u = c vivi = vv 
i 

(3) 

by extending the functions in Vi to cover all sides of an element. Thus Vi has zero value on side 
j whenj # i. The columns of V now represent nv independent displacement modes for all sides of 
an element. 

The hybrid fields of internal stress and boundary displacement are used to impose weak 
integral forms of boundary equilibrium and internal compatibility. Equilibrium on the boundary 
of an element e is imposed by: 

where the 2 x 3  transformation matrix N resolves stress at a boundary point into traction 
components, and t represents applied boundary tractions. 

A weak integral form of compatibility within an element is imposed by 

[ [a;TNTVds]{v} = [D']{v} = { t i }  = STfSde {s} = [F](s} [S. 1 
where f represents the constitutive relations: 

fa = & (6)  

The vectors g and 6 represent generalized tractions and deformations corresponding to stress 
parameters s and displacement parameters v respectively. Equations (4) and ( 5 )  can be written 
together for the primitive element e as 

where matrices D' and F are defined in equations (4) and ( 5 )  respectively. F' is termed the natural 
flexibility matrix, and the superscript e now identifies the element. 

It should be emphasized that the weak form of equilibrium expressed by equation (4) may 
become a strong form of equilibrium for arbitrary applied boundary tractions t when in 
polynomial form of degree p. This may occur when the columns of V and S generate complete 
polynomial displacements and equilibrating stress fields respectively of degree 2 p. 

3. SPURIOUS KINEMATIC MODES 
The origins and the consequences of spurious kinematic modes for equilibrium elements are 
reviewed in this section. The effects of these modes, which originate at the level of a single 
primitive element, can be demonstrated by means of the generalized tractions and deformations 
f and 6' which are related to s' and V' by the contragradient transformations in equations (4) and 
(5). These transformations involve the nv x ns matrix De. The work done by displacements V' with 
tractions equilibrating with stresses S' is thus given by 

SeTDeTVe = g T V e  = (8) 
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Clearly for all displacements v: conforming with the n, rigid body modes of an element 

DeTv: = 0 (9) 
Although not strictly necessary, it is here assumed that all the rigid body modes for each side of an 
element are permitted within v'. 

Spurious kinematic modes v&m are defined as all other non trivial solutions to 

DeTVzkm = 0 (10) 
Displacements satisfying equations (9) and (10) form the null-space of DeT, represented by the 
matrix C' which has dimensions nV x (nv - rank D') and satisfies 

De'Ce - - 0  (1 1) 

For these displacements no work is done with any of the internal stress fields. The number of 
independent spurious kinematic modes, nsk,,,, is thus given by 

nskm = (nv - n, - rankD') (12) 
and a necessary, but not sufficient, condition for an element to be free of spurious kinematic 
modes is that 

ns 2 nv - n, (13) 

Boundary tractions t applied to an element are admissible only if 

(a) they are in overall equilibrium, i.e. they do no work with the rigid body modes, and 
(b) they do not excite any spurious kinematic mode, i.e. they do no work with any such mode. 

t is represented by g" as defined in equation (4). It follows that for t to be admissible, g' must 
satisfy: 

geTve = 0 for all V' such that DeTve = 0 

or C"ge = o 
It is now possible to stipulate the conditions for strong equilibrium on the boundary of an 

element: the applied traction must be admissible and in polynomial form of degree d p, where p is 
the degree of the element. The degree p refers to the degree of the polynomial approximations 
assumed within, and on the boundary of, the element. On the other hand, tractions are 
inadmissible if they do not )satisfy the homogeneous equation (14), and hence they would excite 
spurious kinematic modes which in effect deny the means for load transmission. 

By analogy with skeletal structures, spurious kinematic modes can be considered like 'mecha- 
nisms,, and consequently they also act like 'releases' which prohibit the transmission of certain 
generalized forces or 'stress resultants'. These two aspects of spurious modes are illustrated in the 
case of a primitive triangular element with degree p = 1 in Figure 1. For this element, ns = 7, 
nv = 12 and n, = 3. The rank of D' = 7, which implies the existence of two spurious kinematic 
modes. 

A typical spurious mode is shown in Figure 1 with relative values of side displacement modes 
for an equilateral element. Two other similar modes exist by reason of cyclic symmetry, however 
only two of the three are independent. Admissible side loads must do no work with any of the 
spurious kinematic modes, hence the normal tractions shown, which are statically equivalent to 
three couples, are inadmissible. It should be noted that when the degree p is increased for the 
primitive, to a value of 5 say, then in this case ns = 33, nv = 36, n, = 3, and hence ns = nv - n,. 
Thus the necessary condition of equation (13) for no spurious kinematic modes is satisfied. 
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2 + x unit couple 

Figure 1. A typical spurious kinematic mode and an inadmissible load for an equilateral triangular primitive element with 
p = l  

However, it is found that D' is rank deficient with a rank of only 30." In this case, from equation 

Although spurious kinematic modes originate at the element level, the main problem with such 
modes is that they may propagate throughout a finite element mesh, thereby leading to a rank 
deficient structural stiffness matrix for the system, and the possibility of load vectors being 
inadmissible. Such propagation is illustrated for patches of primitive triangular elements in 
Figure 2 for p = 1 and 2. 

In each patch there exists just the one spurious kinematic mode for the system of elements. If 
these modes, or mechanisms, are excited by the applied loads, then a solution to the given 
problem is not feasible since the behaviour of the finite element model is described by an 
inconsistent system of equations. When mechanisms are not excited by the loads, the solution of 
the problem is unique in terms of stress distributions, but multiple in terms of displacements. This 
is indicated by a consistent, but singular, system of equations whose solution is not obtainable 
using solution algorithms designed for positive definite matrices. 

As with the single element, the existence of spurious kinematic modes for an assembly of 
elements can be determined LI priori to the formation of the stiffness equations, but this may 
involve significant computational effort. If d represents the modes of displacement of the sides or 
interfaces of an assembly of elements, the compatibility condition can be expressed by 

Ad = V  (15) 

where v now represents the side displacements of the set of all elements, and A is a Boolean type of 
assembly matrix. Let D now denote the block diagonal matrix: 

(12), nskm = 3. 
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Figure 2. Spurious kinematic modes in a patch of primitive triangular elements: (a) p = 1, quadrilateral patch without 
diagonal subdivision; (b) p = 1, quadrilateral patch with diagonal subdivision; (c) p = 2, quadrilateral patch with diagonal 

subdivison 

where D‘ represents the matrix defined by equation (4) for element e. Then compatible spurious 
kinematic modes dskm for the assembly must satisfy 

Thus the determination of these modes requires the computation of the rank and nullspace of 
[DTA]. 

4. A GENERAL APPROACH TO ANALYSIS WITH 
PRIMITIVE EQUILIBRIUM ELEMENTS 

One possible way to treat the problems associated with spurious kinematic modes in a mesh has 
been proposed in References 4 and 10. A general formulation for equilibrium elements is 
presented there, and the possible spurious kinematic modes in a mesh are controlled by an 
equation solver which is capable of accounting for a matrix of reduced rank, but in a consistent 
system of equations. 

As this solver encounters a dependent equation it zeroes the relevant variable, thus ‘freezing’ 
the spurious kinematic mode in an arbitrary position, and presents to the user a solution which is 
unique and of good quality in terms of the static variables, but whose quality may be doubtful in 
terms of kinematic variables. In cases where the system of equations is ill-conditioned, the 
definition by numerical techniques of those equations that are to be considered as dependent can 
be problematic. Also the a priori recognition of spurious kinematic modes and inadmissible loads 
for a mesh is not possible without significant additional analysis when this approach is used. 

This approach allows for a very simple formulation of elements of any degree, but although the 
numerical problems associated with spurious kinematic modes may be controlled, the influence of 
these modes remains difficult to predict. 
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5. A ROBUST APPROACH BASED O N  MACRO-ELEMENTS 

Other authors have used assemblies of triangular equilibrium elements to form macro-elements, 
in such a way that the spurious kinematic modes are either totally eliminated, or remain internal 
to the macro-element. These macro-elements are either triangular or quadrilateral, as presented 
in Figure 3. 

In the definition of macro-elements initially developed at  Liege,'*2* 2-14 the position of the 
internal node P of the triangular macro-element is not constrained, and as was noted,' this 
macro-element is free of spurious kinematic modes. The position of P in the quadrilateral, 
however, was constrained to be positioned at the intersection of the diagonals. This macro- 
element was studied for polynomial approximations of the stress field up to the second degree and 
it was found that a single spurious mode was always present. This mode was explained with 
reference to a skeletal model formed from pin-jointed subtriangles. The stiffness matrix for the 
macro-element was formed by assembling the stiffness matrices of its four constituent elements, 
and then condensing out the internal degrees of freedom. However, some of these freedoms were 
indeterminate due to the spurious mode. The mode was blocked by the device of adding 
a fictitious bar which effectively coupled certain internal freedoms. The number of internal 
degrees of freedom to be eliminated was thus reduced by one. The stiffness matrix of the 
macro-element is correct as long as the spurious kinematic mode is not excited, and the fictitious 
bar remains unstressed. Figure 2(b) illustrates the important property of the spurious mode: it 
only involves relative displacements of the internal sides, and consequently all tractions applied 
to the external sides are admissible. 

An alternative procedure1*l2* l 3  based on direct construction of stress fields was however found 
to be a more convenient way to obtain a stiffness matrix for a macro-element. By taking 
advantage of the oblique axes formed by the diagonals of the quadrilateral, statically admissible 
stress fields were formed directly so as to satisfy traction continuity between the elements. From 
these independent stress fields in the macro-element it is a straightforward matter to form 
a natural flexibility matrix and then a stiffness matrix. In the case of a hyperstatic element the 
principle of minimum complementary energy is invoked. The spurious kinematic mode thus does 
not explicitly appear in this procedure. More recently, other procedures based on directly 
satisfying internal traction continuity in triangular and quadrilateral macro-elements have been 
proposed.lS- l 8  Other authors have studied these macro elements in the context of elastic and 
elastoplastic analyses, and error e ~ t i m a t i 0 n . l ~ ~ ~ ~  

Figure 3. Macrotlements as assemblies of primitive elements: (a) triangular macro element; (b) quadrilateral macro 
element 
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The idea behind the macro-element is thus a simple one. For a macro-element to be effective, it 
should consist of an assembly of primitive elements for which any spurious kinematic modes 
which may exist only involve displacements of the internal sides, and consequently all tractions 
applied to the external sides are admissible. A mesh of such macro-elements will always be free of 
spurious mode problems provided the load is applied to the sides of the macro-elements. For the 
triangular macro-element there are no spurious kinematic modes irrespective of the degree of the 
stress field or the form of the internal geometry. In contrast, for the quadrilateral macro-element, 
the number and nature of the spurious kinematic modes are dependent on both the degree of the 

Table I. Number and nature of spurious kinematic modes for a quadrilat- 
eral matcro-element 

Position of point P 

Degree of stress field Intersection of diagonals Arbitrary 

p = l  
p 2 2  

n&;m = 1 (benign) 
nskm = 1 (benign) 

nskm = 1 (malignant) 
nskm = 0 

Figure 4. Displaced shapes for a single rectangular macro-element problem: (a) point P at intersection of diagonals; (b) 
Point P not at intersection of diagonals; (c) linear stress fields P at intersection; (d) linear stress fields P not at intersection; 

(e) quadratic stress fields P at intersection; ( f )  quadratic stress field P not at intersection 
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stress field and the form of the internal geometry. With reference to Figure 3, when P lies at the 
intersection of the diagonals, there is always one internal spurious kinematic mode for degree 
p 2 1 (the ‘benign’ case). When P is in an arbitrary position and does not lie at the intersection of 
the diagonals, the kinematics depend on the degree p .  In this case, when p = 1, there is one 
spurious kinematic mode, but now it involves relative movements of the external sides (the 
‘malignant’ case). However when p 2 2 there is no spurious kinematic mode. These properties of 
the quadrilateral macro-element are summarized in Table I, and illustrated in Figure 2, where the 
patches of primitive elements are now considered as macro-elements. Thus for the more general 
case, the spurious mode is  eliminated from the macro-element, and it i s  only in particular cases that 
the mode exists. These findings are based on recent numerical studies reported by Maunder’s*25 
and Ramsay,” and not on formal proofs. More comprehensive results and explanations for these 
findings are in preparation. 

The different characteristics of the quadrilateral macro-elements when under load are illus- 
trated in Figure 4. This figure illustrates the deformed shapes of four rectangular macro-elements 
when loaded with a uniform compressive stress, which is an admissible form of loading for all four 
elements. When spurious kinematic modes are present, their amplitudes, which are arbitrary, 
have been chosen so as to produce displacements of the same order of magnitude as for the other 
modes of displacement. 

6. PROPOSED APPROACH 

Based on the observations made in Sections 4 and 5, an efficient approach which combines 
generality with robustness is proposed. In this approach macro-elements are first defined as 
composed from primitive elements of general degree. Then the internal displacement variables are 
eliminated (condensed out) from the macro-element equations so as to obtain a stiffness matrix in 
terms of external variables. This approach requires that the composition of the macro-element 
either excludes spurious kinematic modes altogether, or if such modes are present they only 
involve the internal degrees of freedom. In the latter case the elimination procedure, as in 
Section 4, must recognize and account for dependent equations. The resulting stiffness matrix for 
the macro-element is then free of the singularities associated with spurious kinematic modes, and 
the assembly of all the macro-element matrices into a global set of equations follows the 
conventional procedure for a stiffness m e t h ~ d . ~  

This approach is illustrated for the macro-element in Figure 5 composed of four primitive 
triangles. The triangles are numbered 1 to 4, the ‘internal sides’ or interfaces are numbered 1 to 4, 
and the external sides are numbered 5 to 8. Using the formulation presented in Reference 10, the 

Figure 5. A general quadrilateral macro-element 
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governing system of equations for this assembly of primitive elements is 

S1 

S2 

s3 
s4 

V 1  

V 2  

v3 

v4 

" 5  

v6 

V l  

v8 

where, for example, Di refers to the submatrix of D2 concerning the displacement functions 
associated with side 6, and v3,  g, refer to displacements of and tractions on sides 3 and 5 
respectively. This matrix equation can be written as 

-F DT DT (compatibilt y) 
(internal equilibrium) (18) [ :: : :][!:}=[;e] (external equilibrium) 

where subscripts i and e now refer collectively to the internal and external sides. As matrix F for 
the macro-element is positive definite, the first set of equations (18) expressing the compatibility 
conditions can be solved, taking advantage of the block structure of the matrices, to obtain 

s = F - ~ D T v ,  + F - ~ D T v ,  (19) 

This solution can be substituted in the second set of equations (18), which accounts for internal 
equilibrium: 

where Kii = DiF-'D: and Ki, = DiF-'D;f. 
Due to the possible presence of one spurious kinematic mode the solution for the vis from these 

equations may not be unique. Nevertheless, since these equations are always consistent, a solu- 
tion can be obtained either by using an appropriate form of Gauss elimination, or by using the 
pseudo-inverse KZ as determined by singular value decomposition.26 
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When s is replaced by v, in the third set of equations (18), the macro-element stiffness matrix is 
obtained which transforms the external displacements to external tractions: 

KV, = & 

where the general form of K can be expressed as 

K = [K,, - KLK: Kie], where K,, = D,F- 'DT (21) 

7. PROCESSING OF THE RESULTS 

Once the global stiffness matrix is obtained the resulting system of equations can be solved using 
an algorithm appropriate for its structure: band, profile or sparse matrix.' The solution consists 
of the values of the displacement modes of the external sides of the macro-elements. 

From these values the displacement modes of the internal sides of the macro-elements can be 
obtained from equation (20). However, these displacements should in general be disregarded 
when Kii is singular, as then they only indicate one of the feasible solutions. Only the internal 
displacements, and not the stresses, are dependent on the spurious kinematic modes. The unique 
stress parameters are recovered from equation (19) after using equation (20): 

(22) s = F-'[Dr - D'K: Ki,]ve 

8. NUMERICAL EXAMPLES 

The behaviour and performance of the macro-elements discussed in this paper will be demon- 
strated through three numerical examples. In all the examples the macro-elements are rectangu- 
lar, use diagonal subdivision, and the degrees of the stress fields are considered in the range 1 to 
10. These properties of the macro-elements are chosen to simplify the examples, and are not 
constraints of the formulation. In Problem 1 equilibrium elements will be compared with 
conventional conforming displacement elements in order to compare the characteristics of the 
two different types of solution. Problem 2 illustrates the performance of equilibrium elements for 
a case with discontinuous material properties, whilst in Problem 3 a case involving a stress 
singularity due to geometry is investigated. 

The stress plots that appear for the examples in the plates show unprocessed finite element 
stresses, i.e. no averaging or smoothing has been performed. For all the problems, the numbers of 
degrees of freedom (dof) tabulated for the equilibrium models refer to those associated with the 
displacements of the external sides of the macro-elements. Other measures of the dofs of the 
equilibrium models are possible which depend on considering the models as composed of 
primitive elements, rather than macro-elements, namely: 

dof,-the total number of displacement degrees of freedom; 
dof,-the number of stress degrees of freedom. 
dof,-the total number of degrees of freedom (displacements and stresses) as used in Refer- 

ence 10. 

These quantities are compared in Table I1 for the meshes considered in Figure 6, when p = 2. 

Problem 1. The geometry, boundary conditions and meshes are shown in Figure 6. The 
boundary tractions are linear and are defined to be in equilibrium with the stress field given in 
equation (23). It should be noted that whilst this stress field is statically admissible with zero body 
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forces, it is not kinematically admissible and is, therefore, invalid as the solution to the problem. 

6, = X L  

ay = y 2  (23) 

T x y  = - 2xy 

Finite element analyses were performed using both conforming displacement elements (the 
standard 4-noded Lagrangian element and the 8-noded serendipity element) and the macro- 
equilibrium elements. Full integration was used in the analyses with both types of elements. The 
finite element strain energies U h  are shown in Table I11 and were calculated using Young's 
modulus E = 210N/m2, Poisson's ratio v = 0-3, and a material thickness t = 0.1 m with the 

Table 11. Degrees of freedom for the meshes in Figure 6 
when p = 2 

Mesh dof (macro) dofd dof, dof,, 

1 72 168 360 192 
2 240 624 1392 768 
3 864 2400 5472 3012 
4 3264 9408 21696 12288 

1 -  
I .  . . . . . . . . ., 

Figure 6. Problem 1: (a) the geometry and boundary conditions; (b) the meshes 

Table 111. Finite element results for Problem 1 

Conforming element Equilibrium element 

Mesh 'U6 dof 'U; dof ' U f  dof ' U f  dof 

1 1702.598 18 2036765 42 2050.422 48 2041.809 72 
2 1953359 50 2041.174 130 2042.310 160 2041.615 240 
3 2019.156 162 2041.570 450 2041.655 576 2041.602 864 
4 2035.951 578 2041.600 1666 2041604 2176 2041602 3264 
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2oM 

m5 

assumption of plane stress. The right superscripts C and E refer, respectively, to the conforming 
and equilibrium models whilst the left superscripts refer to the number of nodes per conforming 
element, and to the degree of the stress field in the case of the equilibrium element. 

The convergence of strain energies for the four types of element are shown in the graph of 
Figure 7. These results demonstrate the upper bounded nature of the strain energy for equilib- 
rium models in contrast to the lower bound values achieved by conforming models. From the 
results given in Table I11 it is possible to state that the true value of the model strain energy U is 
such that 2041.60015 < U < 2041.60229 (two additional decimal places are given). 

The displaced shapes for Mesh 1 for the 4-noded displacement element and the linear 
equilibrium element are shown in Figure 8. The non-conforming edges of the equilibrium model 
are clearly seen. 

Plate 1 demonstrates, qualitatively, the way in which equilibrium is violated when using 
conforming displacement elements. The discontinuities in the t,,-component of the stress across 
the element interfaces can be readily observed. 

4-nodcd displacement element 0 

8-noded displacement element t 

linear equilibrium element o 

quadratic quilibrium element x 

-: - - - I  

- 

m5m 2030 loo number of dof lo00 

Figure 7. Convergence of strain energies for Problem 1 

(4 (b) 

Figure 8. Displaced shapes for Mesh 1 of Problem 1: (a) conforming (4-noded) elements; (b) equilibrium (linear) elements 
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Problem 2. This problem compares the quality of results obtained by p and h refinement 
schemes with equilibrium elements. A rectangular membrane is formed from two square regions 
of different materials. Each material has a different Young’s modulus but the same Poisson’s 
ratio. The membrane is loaded with uniform tension as shown in Figure 9. 

Region 1 has a Young’s modulus of El = 100N/m2 and for Region 2 E2 = 10N/m2. Both 
regions have a Poisson’s ratio of v = 0.3 and a material thickness t = 10 m. An assumption of 
plane stress has been made for the purpose of this analysis. The coarsest mesh that can be used for 
this problem is the two element mesh shown as Mesh 1 in Figure 9(b). In addition to this mesh 
two uniform (h) refinements are also investigated (Meshes 2 and 3). In terms of p refinement, 
results for polynomial stress fields of degree one (linear) to degree five (quintic) are presented. The 
finite element strain energies U,“ are shown in Table IV, and their convergence characteristics are 
shown graphically in Figure 10. 

An idea of the different characteristics of the two types of refinement (p and h) can be obtained 
by studying the stress fields, and the distribution of normal traction along the material 

Figure 9. Problem 2 (a) the geometry and boundary conditions; (b) the meshes 

Table IV. Finite element strain energy for Problem 2 

Mesh 1 Mesh 2 Mesh 3 
(P) UH dof UB dof UB dof 

1 0.5477909 28 0.5467302 88 0.5462864 304 
2 0.5464224 42 05462343 132 05461185 456 
3 0.5463319 56 0.5461381 176 05460849 608 
4 05461697 70 05461002 220 0.5460724 760 
5 05461382 84 05460829 264 05460669 912 
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Figure 10. Convergence of strain energies for Problem 2 

interface. For this purpose, contour plots of the ox,-component of stress are shown in 
Plate 2. 

For Mesh 1 (p = 1) the discontinuities in stress that may occur across interfaces of equilibrium 
elements are clearly visible between the primitive elements. The discontinuities reveal the fact that 
each of the two square macro-elements is actually composed of four triangular primitive elements. 
Even though such stress discontinuities may occur, pointwise equilibrium across interfaces is 
strictly maintained. This is confirmed, for example, by the continuity in the x-direction of the 
a,,-component of stress at the interface between the two regions. 

Figure 11 gives a more quantitative view of the stress distribution at the interface of the two 
regions by showing the ox,-component of stress plotted along this interface for a number of 
selected models. Discontinuities in the y-direction of the stress ox, are observed for Mesh 
3 (p = l), which violate the true solution, but do not violate equilibrium. 

Problem 3. This problem involves a stress concentration due to a crack of infinitesimal width, 
and of length 5 m  as shown for the symmetric half in Figure 12. The extent of the crack is 
illustrated by the thick line. The boundary tractions are evaluated from the following stress field 
which is both statically and kinematically admis~ible:~’ 

100 e e 3e 
Jr sin - cos - cos - 

2 2 2  z,, = - 
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Figure 11.  Plot of the a,,-component of stress along the line x = 10 m for Problem 2 



(a) (b) 

Plate 1 .  Contours of the z,-component of stress for Mesh 1 of Problem 1: (a) conforming (Cnoded) element; (b) equilibrium (linear) element 

Mesh 1 (p=3) 

Plate 2. Contours of the cr,-component of stress for selectedp-h combinations 

Mesh 3 (p=5) 



Mesh 1 @=3) True solution 

Plate 3. Convergence of the 7,-component of the stress for Problem 3 

Mesh 1 p=5 Mesh 2 p=3 Mesh 3 p=2 Mesh 4 p=l 

error=l.65% emr=1.73% error=1.46% error=1.64% 
dof=84 d0f=176 d0f=456 dof=l120 

Plate 4. Contours of the 7,-component of stress for similar errors in strain energy 
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Symmetric boundary conditions are applied on the line of symmetry. For Young's modulus 
E = 210N/m2, Poisson's ratio v = 0.3, and a material thickness t = 0.1 m with a plane stress 
assumption, the strain energy U for the symmetric half shown is 62.442963 N m.'*. 

The strain energy results from the finite element analyses performed on the four meshes shown 
in Figure 12(b) are given in Table V. 

Figure 13 shows the convergence characteristics of the finite element strain energies. Note the 
significantly increased rate of convergence obtained with p-refinement compared with h-refine- 
ment. For Mesh 4, the 8-noded displacement element gives a finite element strain energy of 
'U; = 61.056022 N m  (866 dof) thereby confirming the bounded nature of the two types of 
solution. 

The convergence of the stresses is demonstrated for the r,,-component of the stress in Plate 3, 
whilst that of the displacements is shown in Figure 14. 

Although p-refinement has the faster convergence rate, it is of interest to consider qualitatively 
the stress fields obtained in the four meshes for the same energy of the error. For example, Plate 4 

Ll w 

M a h  I Mesh 2 

Mesh 3 Mesh 4 

Figure 12. Problem 3: (a) the geometry and boundary conditions; (b) the meshes 

Table V. Finite element results for Problem 3 

Mesh 1 Mesh 2 Mesh 3 Mesh 4 

P UB dof u: dof u: dof U: dof 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 

73.313361 
66.731729 
64.71 391 8 
63.909238 
63.471788 
63.207607 
63.034270 
62.914096 
62,827305 
62.762547 

28 
42 
56 
70 
84 
98 

112 
126 
140 
154 

67.107610 
64.333771 
63525367 
63.1 53881 
62.946635 
62-8 193 12 
62.735024 
62.676244 
62.633612 
62.601 702 

88 
132 
176 
220 
264 
308 
352 
396 
440 
484 

64.577097 
63.356702 
62.9742 19 
62.7941 40 
62.692650 
62.629937 
62.588271 
62.559142 
62537979 
62.5221 17 

304 
456 
608 
760 
912 

1064 
1216 
1368 
1520 
1672 

~~ 

63.470253 
62.892746 
62.706200 
62.6 17507 
62567278 
62.536154 
62.5 15438 
62.500936 
62.490399 
62.482472 

1120 
1680 
2240 
2800 
3360 
3920 
4480 
5040 
5600 
6160 
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Figure 13. Convergence characteristics of the equilibrium models for Problem 3 

shows zXy for the four meshes when the error is approximately 1.6 per cent in energy terms. This 
corresponds to log(UF - U )  x 0 in Figure 13. It appears that the continuity and quality of zXy 

improve with the number of degrees of freedom achieved with h-refinement. 

9. CONCLUSIONS 

By recognizing the general properties of macro-elements, a p-type equilibrium element has 
been formulated which effectively removes the usual problems associated with spurious 
kinematic modes. 
Numerical examples with rectangular macro-elements with p in the range 1 to 10 confirm 
the feasibility of the proposed formulation, and indicate that solutions of good quality are 
obtainable for both statically admissible stress fields and side displacements. 
Numerical examples indicate that, in energy terms, p-refinement produces much faster 
convergence than h-refinement. However, for the same overall error, it appears that the 
stress fields from p-refinement of a coarse mesh, although incurring less degrees of freedom, 
are inferior to those obtained with some h-refinement. 
Further work is required to: 

(a) Formally prove the observed properties of the macro-elements as regards spurious 
kinematic modes. 
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Mesh 1 @=l) Mesh 2 @=1) Mesh 3 @=l) 

Mesh 1 @=2) Mesh 2 @2) 

Mesh 1 @=3) True solution 

Figure 14. Convergence of the displaced shape for Problem 3 

(b) Investigate alternative numerical procedures for the formulation of macro-elements, and 
their assembly into finite element equations, with a view to minimizing computational 
effort. 

(c) Extend numerical studies to include triangular and general distorted quadrilateral 
macro-elements. These studies should also address such questions as: what are the 
optimum positions of the internal points P? 

(d) Make a detailed comparison between equilibrium and displacement elements, both from 
the computational and the engineering points of view. 

5 .  The p-refinement capability of the macro-element also makes it suitable for use in dual type 
error estimation of finite element models with hierarchical p-type displacement elements. 
This is in contrast to existing methods which approximate equilibrium solutions by using 
higher order displacement  element^.^^.^' 
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