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Abstract - Effective error estimation in plane stress linear-elastic problems using continuous, boundary admissible estimated stress 

fields is discussed. An error estimator based on continuous estimated stress fields achieved by interpolating from unique nodal 

stresses over the element with the element shape functions and in which the static boundary conditions are applied is introduced.  

The unique nodal stresses are achieved by the computationally cheap approach of simple nodal averaging of the finite element 

stresses at a common node.  Results for this error estimator on a number of familiar benchmark problems are presented for the 

standard four-noded Lagrangian displacement element, and compared with those of other error estimators currently under research. 

 

INTRODUCTION 

Application of the standard displacement finite element 

method to problems in stress analysis results in a 

solution which, whilst satisfying compatibility1 and the 

constitutive relations for the material(s), generally 

violates equilibrium.  This lack of equilibrium 

manifests itself in: 

 

1. a lack of internal equilibrium, 

2. a lack of interface equilibrium, and 

3. a lack of equilibrium on the static boundary. 

 

Of these three error indicators the lack of interface 

equilibrium may be considered the most readily 

observed through consideration of the continuity, or 

otherwise, of the direct stress normal to, and the shear 

stress tangential to an element interface.  Traditionally 

this error indicator has served the engineer in 

highlighting areas of the mesh for which the finite 

element approximation is insufficient. 

 

Error indicators such as this, although indicating the 

presence of error, do little to help the engineer actually 

to quantify the error.  More recently, however, error 

estimators which can quantify the error in the form of a 

single number known as an error measure have become 
                                                           
1Note: this assumes that the kinematic boundary conditions are 
satisfied exactly. 

popular areas of research.  The error measure 

represents the total error in a single element and thus 

can be used to indicate the distribution of error within a 

mesh. Alternatively, the elemental error measures may 

be summed to give an error measure for the entire 

mesh.  The motivation behind such research lies in the 

need for effective error estimation in the self-adaptive 

procedures which are, increasingly, being implemented 

in commercial finite element software codes.   

 

Error estimators currently under research can be 

divided into the following three categories: 

 

1. those that quantify the error directly in terms of 

residual quantities [1,2,3,4], 

2. those that quantify the error indirectly  through the 

construct of a stress field that is continuous [4,5,6,7], 

and a better estimate of the true stress field, and 

3. those that quantify the error indirectly through the 

construct of stress field that is statically admissible 

[8,9,10,11], and a better estimate of the true stress field. 

 

Recent research [16,17,20] has demonstrated that the 

effectivity of error estimators based on estimated stress 

fields that are continuous can be significantly enhanced 

through the simple expedient of 'applying the static 

boundary conditions' to the estimated stress field.  Such 
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estimated stress fields could then be termed boundary 

admissible.  In this paper a simple error estimator 

utilising an estimated stress field which is both 

continuous and boundary admissible is considered. 

 

The research detailed in this paper considers the 

problem of plane linear elasticity.  In particular, the 

performance of error estimators for the standard four-

noded Lagrangian displacement element are examined. 

 

ERROR MEASURES 

The philosophy of error estimation given here is 

presented in terms of familiar strain energy quantities 

rather than the, perhaps, less familiar energy norm 

quantities generally used in the literature.  This 

approach was developed in [15] with the aim of making 

the subject of error estimation more approachable to 

the practising engineer - the people who will ultimately 

use such concepts. 

 

The finite element method results in a finite element 

stress field { }hσ  as an approximation to the true stress 

field { }σ .  The difference between the true stress field 

and the finite element stress field defines an error 

stress field: 

 

{ } { } { }he σσσ −=                      (1) 

 

This error stress field may be integrated over the model 

to form the strain energy of the error: 

{ } { }dVU
V

e

T

ee ∫=  
2

1
εσ                 (2) 

where { }eε  are the elastic strains corresponding to 

{ }eσ  and V is the volume of the model. 

 

In practice this integral is performed at the element 

level and the strain energy of the error (for the model) 

formed as the summation of elemental contributions.  It 

is noted that for models for which the static boundary 

conditions are represented by consistent node forces, 

and for which the kinematic boundary conditions are 

homogeneous, the strain energy of the error is given 

directly as the difference between the true strain energy 

and the finite element strain energy: 

 

he UUU −=                            (3) 

 

Equation (3) states that the strain energy of the error is 

equal to the error of the strain energy. 

 

The significance of the strain energy of the error can be 

determined by forming the percentage error with the 

true strain energy: 

 

α = ×
U

U

e 100%                            (4) 

 

The larger the value of α  the more significant is the 

error in the model. 

 

The development thus far has assumed that the true 

stress field { }σ  is known.  Of course, in any practical 

situation the true solution will not be known and in 

order to proceed an estimate of the true stress field is 

required. The details of precisely how this is to be done 

will be discussed in the following section, however, 

assuming for the moment that an estimated (true) stress 

field { }σ~ 2 has been obtained, then an estimated error 

stress field can be defined as: 

{ } { } { }he σσσ −= ~~                   (5) 

 

The strain energy of the estimated error is formed  in a 

similar way to the strain energy of the (true) error as: 

 

{ } { }dVU
V

e

T

ee ∫=  ~~
2

1~
εσ                 (6) 

where { }eε~  are the elastic strains corresponding to 

{ }eσ~ . 

 

                                                           
2Note: the tilde will be used throughout to indicate estimated 
quantities. 
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The estimated percentage error is given as: 

 

%

%

%
%α = ×

U

U

e 100                           (7) 

where % %U U Uh e= + . 

 

The parameter %α  is the error measure that can be used 

in a practical analysis to inform the engineer of the 

accuracy of the finite element solution.  Elementwise 

distributions of %α   could be used in self-adaptive 

procedures to indicate areas of the model that required 

more (or indeed less) refinement for a specified level of 

accuracy. 

 

The quality of the error measure is clearly dependent 

on the quality of the estimated stress field.  Before one 

can confidently use any error estimator it must be tested 

on benchmark problems for which the (true) solution is 

known.  The effectivity of an error estimator is formally 

quantified in terms of the effectivity ratio: 

β =
%U

U

e

e

                                 (8) 

 

The closer the effectivity ratio is to unity the more 

effective the error estimation.  A desirable property of 

any error estimator is that as the mesh is refined the 

effectivity ratio tends to unity.  Such a property is 

called asymptotic exactness.  A good effectivity ratio 

(i.e. one that is close to unity) whilst indicating good 

error estimation in the sense of the definition of the 

effectivity ratio does not necessarily imply that the 

estimated stress field is a good approximation to the 

true one. Another integral quantity which measures the 

proximity of the estimated stress field to the true one is 

therefore defined.  The  error in the estimated stress 

field is defined as the difference between the true stress 

field and the estimated stress field: 

 

{ } { } { }σσσ ~−=
)

                       (9) 

 

The strain energy of the error in the estimated stress 

field is then given as: 

{ } { }dVU
V

T  
2

1
∫= εσ

)))
                (10) 

where { }ε
)

 are the elastic strains corresponding to 

{ }σ
)

. 

 

The smaller the value of this quantity, the closer the 

estimated stress field is to the true one. 

 

CONTINUOUS ESTIMATED STRESS FIELDS 

Before discussing estimated stress fields that are  both 

continuous and boundary admissible, let us first review 

a number of available methods for obtaining estimated 

stress fields that are continuous.  Procedures for 

achieving boundary admissibility will be discussed in 

the following section. 

 

A standard method for achieving continuous stress 

fields is to interpolate from unique nodal stresses over 

each element with the element shape functions.  The 

process of transforming a discontinuous finite element 

stress field into an estimated stress field that is 

continuous is shown diagramatically for a single 

component of stress and a patch of four elements in 

Fig. 1. 

 

 (a) Discontinuous σh  

       

(b)Unique nodal stresses 
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(c) Continuous %σ  
 

Fig. 1. Continuous %σ  from discontinuous σ h  

 

The continuous estimated stress field { }σ~  is defined, 

for each element, in terms of the shape functions for the 

element and a vector of unique nodal stresses { }s : 

{ } [ ]{ }sN=σ~                          (11) 

where N  is a matrix containing the shape functions 

for the element. 

 

The vector { }         
TTTTT

sssss 4321 ,,,=  where 

{ }  Txyyxi ssss ,,=  is the vector of unique nodal 

stresses for node i. 

 

Over recent years many methods for determining 

unique nodal stresses have been proposed.  One might 

say that the method for obtaining unique nodal stresses 

is not in itself unique.  Perhaps the simplest of all these 

methods is that of nodal averaging of the finite element 

stresses at a common node: 

{ } { }∑
=

=
n

j

j

ihi
n

s
1

1
σ                   (12) 

where the summation is taken over the nodes of all 

elements j connected to node i. 

 

 Simple nodal averaging, as this technique is generally 

known, is commonly used in commercial finite element 

codes as a method for making the discontinuous finite 

element stresses more palatable to the engineer.  The 

ANSYS suite of finite element software has included an 

error estimator based on a continuous estimated stress 

field derived from unique nodal stresses achieved 

through simple nodal averaging in its recent versions.  

The ANSYS error estimator, however, uses an inexact 

integration scheme known as nodal quadrature to 

perform the integration of the strain energy of the 

estimated error (equation (6)) and, although being 

commendably cheap in computational terms, this 

additional approximation results in an error estimator 

which is not asymptotically exact.  Results 

demonstrating this point will be presented later in this 

paper (see Problem 3).  Recent studies [15] have 

demonstrated that by using a slightly more costly, but 

exact, (at least for  parallelogram shaped elements) 

integration scheme the property of asymptotic 

exactness can be recovered for the ANSYS error 

estimator. 

 

Other methods of achieving sets of unique nodal 

stresses have concentrated on obtaining them through a 

least squares fit between the continuous estimated 

stress field and the finite element stress field [5,12].  

However, although mathematically elegant, in addition 

to the high cost of obtaining the unique nodal stresses 

through global computations (c.f. simple nodal 

averaging where calculations are performed at a local, 

nodal level), the resulting error estimation has been 

demonstrated to be less effective than some that use 

simple nodal averaging [17]. 

 

More recently, the superconvergent patch recovery 

scheme of Zienkiewicz and Zhu [6] has received much 

attention.  In this method the unique nodal stresses are 

obtained by interpolating from a stress surface fitted to 

the superconvergent stress points surrounding the node 

of interest.  The fit is performed in a least squares 

manner individually for each component of stress.  It 

has been claimed that this method results in high 

accuracy error estimation and that the nodal stresses 

thereby recovered are superconvergent.  These claims 

have been investigated in [17] and the results are the 

subject of a paper shortly to be published [18]. 
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The concept of a patch recovery scheme has been 

adopted by other researchers.  For example Wiberg et 

al [7,20]  employ a patch recovery scheme but, rather 

than perform the recovery individually for each 

component of stress as is done in the Zienkiewicz and 

Zhu approach, they do so for all components 

simultaneously.  The coupling of the stress components 

is made through the equations of equilibrium. 

 

Beckers, Zhong and Maunder have proposed a method 

of averaging and extrapolation for obtaining unique 

nodal stresses in a local manner [4].  This method bears 

strong similarities with the patch recovery scheme of 

Zienkiewicz and Zhu. 

 

BOUNDARY ADMISSIBILITY 

From a purely intuitive standpoint one might suggest 

that since the true stress field generally exhibits 

continuity then so an estimated stress field constructed 

from the finite element stress field such as to be 

continuous is likely to be a good candidate for the true 

stress field.  One can reinforce this intuitive argument 

by considering that a continuous estimated stress field 

is also better than the original finite element stress field 

in that interface equilibrium is recovered i.e. some 

attempt is being made to recover the lost equilibrium.  

One can extend this idea further by requiring the 

estimated stress field to, in addition, satisfy the static 

boundary conditions.  The idea of applying the static 

boundary conditions to an already continuous estimated 

stress field and thereby achieving a continuous, 

boundary admissible estimated stress field is discussed 

in this section. 

 

The concept of modifying the finite element stress field 

with the known static boundary conditions is not new.  

Indeed, common sense tells us that where static 

boundary conditions are applied and, therefore, the 

direct stress normal to and the shear stress tangential to 

the surface are known we should disregard the finite 

element values and use values that are known to be 

true.  Unfortunately, however, it is usually the third 

component of stress, the direct stress tangential to the 

surface, that is of interest to the engineer in any 

analysis.  In an analogous fashion it makes sense to 

modify the estimated stress field with known values of 

stress.  This idea has been used before in the 

improvement of the original finite element stress field 

{ }hσ  [13].   

 

In [14] the importance of the static boundary conditions 

in achieving an asymptotically exact error estimator is 

discussed.  Ways in which these boundary conditions 

can be applied to modify the continuous estimated 

stress field are now considered.  All the ways aim to 

estimate the state of stress at nodes on the static 

boundary using original finite element stresses, and the 

specified boundary tractions, for patches of elements 

connected to the boundary nodes.  Such a patch is 

illustrated in Fig. 2 for three methods: (a) a simple 

direct method as proposed in this paper [17], (b) that 

proposed by Mashaie [16] and (c) that proposed by 

Wiberg [20]. 

 
curved boundary

τ

σn

σt

(a) 

Method proposed in this paper 
σn σn

τ
τ

(b) Method 

proposed by Mashaie 
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σn σn
τ

τ

(c) 

Method proposed by Wiberg 

2x2 Gauss point

midpoint of element side

isoparamteric centre
 

Fig. 2. Application of static boundary conditions on a 

smooth boundary 

In the proposed method (a) the stress components 

σ τn  and , which are normal and tangential to the 

boundary surface at the node, are equated to the 

specified tractions; the third component σ t  is 

determined by averaging nodal values in adjacent 

elements.  As with internal nodes, the nodal values for 

an element are extrapolated from the four Gauss 

integration points using bilinear extrapolation 

functions.  In method (b) three stages of stress 

averaging are involved.  Nodal stresses are first 

determined as the average of the nearest Gauss point 

stresses.  Stresses at the midpoints of the sides of 

elements which represent the boundary surface are then 

determined by averaging adjacent nodal stresses.  

These midpoint stresses are modified so that 

components σ τn  and  are equated to local values of the 

specified traction, and finally the nodal stresses are 

modified to be the average of adjacent midpoint 

stresses. Method (c) involves significantly more 

computation.  The Superconvergent Patch Recovery 

concept [7] is extended to impose, in a weak sense, 

both internal equilibrium throughout the patch and 

boundary equilibrium at the two midpoints.  The weak 

form of equilibrium is achieved by fitting a continuous 

stress field in a least squares sense to minimise 

weighted residuals in stress and body forces. 

 

The examples considered in references [16,20] 

demonstrate that improvements can be achieved in 

error estimators through applying the static boundary 

conditions.  The results presented in this paper using 

the simplified method of application, confirm the trends 

in improvements in comparison with the results of other 

error estimators currently under research.  The details 

for the implementation of method (a) are now given 

with reference to Mesh 1 of Problem 2.  This mesh is 

shown in detail in Fig.3. 

 

For all nodes the first step in recovering the unique 

nodal stresses is to perform simple nodal averaging at 

each node.  For internal nodes, such as node number 9, 

this is all the processing that is required.  For boundary 

nodes, however, additional processing is necessary.  

For nodes that lie on a smooth boundary the direct 

stress normal to the surface σ n  and the shear stress 

tangential to the surface τ  are defined.  The remaining 

component of stress, the direct stress tangential to the 

surface σ t , is generally unknown.   

 

The unit vectors for node number 8 are shown in Fig. 3 

normal (n) and tangential (t) to the actual boundary.  

The first step in the procedure for applying the static 

boundary conditions is to transform the nodal averaged 

stresses at the node of interest { }
i

s  into the local, 

boundary co-ordinate system shown in Fig. 3.  This 

requires a rotation of the stress components through an 

angle φ : 

 

{ } [ ]{ }
ii

sRb =                           (13) 

where [ ]



















=

−

−

φφφ

φφφ

φφφ

2cos2sin
2

1
2sin

2

1

2sincossin

2sinsincos
22

22

R  

 

The nodal averaged stresses in the local, boundary co-

ordinate system { }
i

b  are now modified with the static 

boundary conditions: 
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{ } { }
































+

















=

τ

σ

σ

t

n

ii bb

100

000

001

000

010

000
ˆ  (14) 

 
45

2

9

n

7

1

t
8

6

3

φ

Interior node
Boundary node

x

y

 

Fig. 3. Mesh 1 of Problem 2 

 

Finally, the modified nodal averaged stresses { }ib̂  are 

transformed back into the global co-ordinate system: 

 

{ } [ ] { }ii bRs ˆˆ 1−
=                         (15) 

 

For nodes that  lie at the intersection of two orthogonal 

static boundaries e.g. node number 4 of Fig. 3, 

application of the static boundary conditions results in 

all three components of stress being modified to known 

true values.  For nodes that lie completely on symmetry 

boundaries e.g. node numbers 2 & 6 of Fig. 3, the only 

known condition on the stresses is that the shear stress 

tangential to the surface is zero i.e. τ = 0.  Node 

numbers 1,3,5 & 7 lie at the intersection of static and 

symmetric boundaries.  For these nodes the symmetry 

condition is automatically satisfied by modifying 

according to the static boundary conditions on the static 

boundary. 

 

This method can easily be extended to cover the more 

general case of a boundary surface with convex or 

concave corners, where normal and tangential 

directions are not uniquely defined.  These cases are 

illustrated in Fig. 4.  In reality such corners will have 

radii, albeit with small values.  However, finite element 

models composed of four-noded straight sided elements 

cannot represent exactly general curved boundaries, let 

alone corner radii with possibly uncertain values.  This 

is only really of concern if stress distributions are 

sought in the neighbourhood of corners.  Otherwise it is 

common to represent a corner by the node at the 

intersection of two sides. 

γ

σ
2

1σ
τ
2

1σ

τ1

τ1

τ2

σ2

(a) 

Convex corner 

π−γ/2 π−γ/2

σt

-τ

nσ
+τ

τ

-
nσ

nσ+

( )nσ = nσ+
+

-
nσ

2

( )= +

2
τ +τ -τ

(b) 

Concave corner 

 

Fig. 4. Application of static boundary conditions on a 

polygonal boundary 

 

Fig. 4(a) shows a convex corner with four specified 

components of traction adjacent to the corner node.  If 

the components are consistent with a unique state of 

stress within the corner, then this stress is imposed at 

the node.  If the components are inconsistent, then a 

unique nodal stress can be defined from consistent 

components σ τ σ τ1 1 2 2, , ,  defined so that: 
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( ) ( ) ( ) ( )σ σ τ τ σ σ τ τ1 1
2

1 1
2

2 2
2

2 2
2− + − + − + −     (16)  

is minimised subject to: 

 

( ) ( ) cotτ τ σ σ γ1 2 1 2+ = −                     (17) 

 

which is the consistency condition for a unique state of 

stress. 

 

In this case: 

 

(18)         

sin

cos

sin

cos

2

sin

2

2

1

1

2

2

1

1























−

−

























=

























γ

γ

γ

γ

γ

τ

σ

τ

σ

τ

σ

τ

σ

e           

where e = + − − ≠τ τ σ σ γ1 1 1 2 0( ) cot . 

 

Fig. 4(b) shows a concave (re-entrant) corner with 

normal and tangential tractions which may be specified 

with discontinuities at the corner node.  In this case 

average values are assumed in the directions of the 

bisector of the corner angle, and perpendicular to this 

bisector.  The stress components at the corner node are 

taken as the average traction values σ n  and τ , and σ t  

is averaged as in the case of a smooth boundary surface 

as illustrated in Fig. 2(a). 

 

ERROR ESTIMATORS INVESTIGATED 

In the following sections the performance of a number 

of error estimators using continuous and continuous, 

boundary admissible estimated stress fields will be 

investigated.  However, before doing this it is necessary 

to formally define the error estimators that will be 

examined.   

 

Two error estimators will be examined.  Both use 

continuous estimated stress fields as defined by 

equation (11).  The first error estimator EE2  (the 

subscript 2 is used in order to retain a consistency with 

previously published work e.g. [15]) uses unique nodal 

stresses obtained by a process of simple nodal 

averaging.  The second error estimator EE b

2  is identical 

to EE2  in all respects except that the estimated stress 

field in addition to being continuous is also boundary 

admissible.  Boundary admissibility is achieved by 

modifying all values of nodal stress affected by the 

static boundary conditions to the known, true values 

using the simple direct method detailed in this paper. 

Comparison of the two error estimators (EE2  and EE b

2 ) 

will be made on the basis of the effectivity ratio of 

equation (8) (β 2  and β 2
b  respectively for the two error 

estimators) and on the strain energy of the error of the 

estimated stress field of equation (10) (
)

U2  and 
)

U b

2  

respectively for the two error estimators). 

 

In addition to the two error estimators EE2  and EE b

2 , 

for the third problem presented in this paper the 

effectivity ratios of a number of other error estimators 

using continuous estimated stress fields will also be 

reported.  These error estimators are: 

 

EE p : This error estimator uses unique nodal stresses 

recovered from a patch recovery scheme.  The parent 

patch recovery scheme of reference [19] is used here. 

 

EEZZ : This error estimator is the original Zienkiewicz 

and Zhu error estimator proposed in [5] and uses 

unique nodal stresses recovered from a global least 

squares fit between the continuous estimated stress 

field and the finite element stress field3. 

 

EE4 : This error estimator is the one used in the 

ANSYS suite of finite element software and has been 

discussed in detail in reference [15]. 

 

NUMERICAL EXAMPLES 

In order to demonstrate the improved effectivity of 

error estimators using continuous, boundary admissible 

estimated stress fields over those that simply use a 

                                                           
3The results for this error estimator have been taken from reference 
[4]. 
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continuous estimated stress field, four numerical 

examples will be presented. The problems investigated, 

although perhaps chosen in an arbitrary fashion, are 

realistic problems exhibiting characteristics with which 

a practising engineer is likely to be familiar.  All 

problems are force driven with a plane stress 

constitutive relationship.  The only conditions placed 

on the displacements are those necessary to eliminate 

rigid body motions.   

 

Problem 1.  This problem involves a rectangular 

membrane loaded with static boundary conditions 

consistent with the linear statically and kinematically 

admissible stress field generally associated with a beam 

under pure (engineer's) bending.  The true stress field 

for this problem is: 
σ

σ

τ

x

y

xy

y=

=

=

30

0

0

                      (19)

 

and has been plotted in Fig. 8(a). 

10m x

y

20m

150N/m2

 

Fig. 5. Geometry of Problem 1 

 

For a Young's Modulus of E N m= 210 2 , a Poisson's 

Ratio of ν = 0 3.  and a material thickness of t m= 0 1. , 

the strain energy for the problem is: 

U Nm= ≈
2500

7
357 14.              (20) 

 

This problem has also been reported in [15,17,19]. The 

geometry and static boundary conditions are shown in 

Fig. 5.   

 

The way in which an error estimator performs with 

coarse and, possibly, distorted meshes is of interest to 

an engineer.  This problem investigates the 

performance of the error estimators as a coarse, but 

regular mesh is progressively distorted.  The meshes 

that will be used in the problem are shown in Fig. 6.  

 

 

Table 1. Results for Problem 1 

Mesh β 2  β 2
b

 
)

U2  
)

U b

2  

1 0.71 0.82 103.7 7.7 

2 0.60 0.81 114.7 20.3 

3 0.37 0.81 146.6 54.3 

4 0.20 0.82 196.7 100.5 

5 0.13 0.81 272.1 147.3 

 

 

Mesh 3

Mesh 5

Mesh 1

Mesh 4

Mesh 2

 

Fig. 6. Meshes for Problem 1 

 

The effectivity ratio and the strain energy of the error 

of the estimated stress are tabulated in Table 1 and the 

variation of effectivity ratio with distortion is shown in 

Fig. 7. The stress fields for Mesh 1 are illustrated in 

Figure 8. 

 

Distortion

β

 

Fig. 7. β  versus distortion for Problem 1 
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Problem 2.  This problem involves a square membrane 

with a central circular hole of radius a and is the 

classical problem of a stress concentration in an infinite 

membrane.  The true stress field for this problem is: 

 

σ σ θ θ θ

σ σ θ θ θ

τ σ θ θ θ

x

y

xy

a

r

a

r

a

r

a

r

a

r

a

r

= − + +

= − − −

= − + +

∞

∞

∞

{ ( cos cos ) cos }

{ ( cos cos ) cos }

{ ( sin sin ) sin }

1
3

2
2 4

3

2
4

0
1

2
2 4

3

2
4

0
1

2
2 4

3

2
4

2

2

4

4

2

2

4
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where σ ∞  is the value of σ x  at x = ± ∞  and is chosen 

as 10 000 2, N m for this problem.  This stress field has 

been taken from reference [3]. 
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Fig. 9. Geometry of Problem 2 

 

The finite portion of this infinite membrane shown in 

Fig. 9 will be modelled.  Static boundary conditions are 

determined from the stress field given above.  Through 

the symmetry present in this problem only one quarter 

of the membrane need be modelled and the four 

meshes, of increasing refinement, that will be used are 

shown in Fig. 10. 

 

For a Young's Modulus of E N m= ×10 10 6 2 , a 

Poisson's Ratio of ν = 0 25.  and a material thickness of 

t m= 0 01.  the strain energy for this problem is: 

U Nm= 5 18844845. 9                (22) 

and is accurate to the number of digits quoted [17]. 

 

This problem has also been reported in [17,18]. 

Mesh 1 (18 DOF) Mesh 2 (50 DOF)

Mesh 3 (162 DOF) Mesh 4 (578 DOF) Fig. 

10. Meshes for Problem 2 

 

The results for Problem 2 are tabulated in Table 2 and 

the convergence of the effectivity ratios with number of 

degrees of freedom are plotted in Fig. 11. 

 

 

 

 

Table 2.Results for Problem 2 

Mesh β 2  β 2
b

 
)

U2  
)

U b

2  

1 0.2768 0.8766 0.1498 0.1590 

2 0.4456 1.1349 0.0469 0.0459 

3 0.5855 1.0429 0.0115 0.0078 

4 0.7054 0.9309 0.0023 0.0009 

 

β

Degrees of freedom  

Fig. 11. β  versus DOF for Problem 2 

 

Problem 3.  This problem involves a rectangular 

membrane loaded with static boundary conditions 
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consistent with the quadratic statically and 

kinematically admissible stress field typically 

associated with a simply supported beam under the 

action of a transverse shear force.  The true stress field 

for this problem is: 

 
σ

σ

τ

x

y

xy

xy

y

=

=

= −

46 875

0

93 75 23 4375 2

.

. .

                                       (23)

 

 

For a Young's Modulus of E N m= ×3 10 7 2 , a 

Poisson's Ratio of ν = 0 3.  and a material thickness of 

t m= 1 , the strain energy for the problem is: 

U Nm= ≈
239

6000
0 03983. '           (24) 

 

This problem has also been reported in [4,17]. 

 

4m

Y

X

8m

93.75N/m2

750N/m
2

 Fig. 

12. Geometry of Problem 3 

2

Mesh 1 (30DOF) Mesh 2 (90DOF)

Mesh 3 (306DOF) Mesh 4 (1122DOF)
 

 Fig. 13. Meshes for Problem 3 

 

Whereas Problem 1 dealt with the performance of error 

estimators with coarse and distorted meshes, this 

problem looks at how the error estimators perform as a 

mesh is refined.  The geometry and static boundary 

conditions for Problem 3 are shown in Fig. 12 and the 

meshes that are used are shown in Fig. 13.  The 

convergence of the effectivity ratios with number of 

degrees of freedom are plotted in Fig. 14. 

 

Table 3. Results for Problem 3 

Mesh 1 2 3 4 

β 2  0.7120 0.9270 0.9804 0.9947 

β 2
b

 1.0887 1.0518 1.0188 1.0062 
)

U2  375e-5 66e-5 9.43e-5 1.25e-5 
)

U b

2  171e-5 20e-5 1.68e-5 0.13e-5 

β p  0.7450 0.9442 0.9853 0.9960 

β ZZ  (i) 0.81 0.90 0.96 

β 4  1.76 2.28 2.60 2.79 

(i) The result for this error estimators and this mesh was not 

available in [4]. 
(ii) The effectivity ratios β βp ZZ,   and β4  correspond to the error 

estimators EEp , EEZZ  and EE4  defined in the section 'Error 

Estimators Investigated'. 

 

β

Degrees of freedom  

Fig. 14.  β  versus DOF for Problem 3 

 

Problem 4.  This problem involves a rectangular 

membrane with an infinitesimally thin crack of length 

5m as shown in Fig. 15.  The true stress field for this 

problem is: 
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and is taken from reference [3]. 
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Fig. 15. Geometry of Problem 4 

 

For a Young's Modulus of E N m= 210 2 , a Poisson's 

Ratio of ν = 0 3.  and a material thickness of t m= 0 1.  

the strain energy for this problem is: 

U Nm= 124.885926020                (26) 

 

and is accurate to the number of figures quoted [17]. 

 

Static boundary conditions are determined from the 

stress field given in equation (25) and are applied to the 

four meshes shown in Fig. 16. 

 

Mesh 1 (20 DOF) Mesh 2 (54 DOF)

Mesh 3 (170 DOF) Mesh 4 (594 DOF)

 

Fig. 16.  Meshes for Problem 4 

 

The results for Problem 4 are tabulated in Table 4 and 

the convergence of the effectivity ratios with number of 

degrees of freedom are plotted in Fig. 17. 

 

Table 4.Results for Problem 4 

Mesh β 2  β 2
b  

)
U2  

)
U b

2  

1 0.23 0.53 32.38 28.56 

2 0.45 0.64 19.01 17.99 

3 0.51 0.73 10.36 9.95 

4 0.57 0.81 5.33 5.04 

 

Degrees of freedom

β

 

Fig. 17.  β  versus DOF for Problem 4 

 

DISCUSSION AND CONCLUSIONS 

This paper has presented a simple error estimator 

(EE b

2 ) for the four-noded Lagrangian quadrilateral 

element in which a continuous, boundary admissible 

estimated stress field is used.  Unique nodal stresses 

achieved by simple nodal averaging for which the 

components defined by the static boundary conditions 

have been corrected to the true values are interpolated 

over each element with the finite element shape 

functions.  The effectivity of this error estimator is then 

compared with that of one which does not take account 

of the static boundary conditions (EE2 ).  The basis for 

comparison is made on the effectivity ratio β , and the 

strain energy of the error in the estimated stress field 
)

U .  The effectivity ratio measures the proximity of the 
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strain energy of the estimated error with that of the true 

error in the form of a ratio whilst 
)

U  measures the 

proximity of the estimated stress field to the true one.  

For effective error estimation one requires an 

effectivity ratio that is close to unity and, further, it is 

desirable that the effectivity ratio tends to unity as the 

mesh is refined i.e. that it is asymptotically exact.  

Recognising that the effectivity ratio says little about 

the pointwise quality of the estimated stress field leads 

to the introduction of the quantity 
)

U .  This quantity is 

an absolute value; small values indicating good 

pointwise quality of the estimated stress field. 

 

The two error estimators, EE2  and EE b

2 , have been 

tested on four problems that should be familiar to 

practising engineers.  Problem 1 looks at how the error 

estimators are affected by element distortion for a fairly 

coarse mesh.  This is important because it is in 

precisely these types of situation that one would like to 

achieve good error estimation.  Problem 2 looks at how 

the error estimators perform with mesh refinement for a 

problem involving a stress concentration. Problem 3 

looks at how the error estimators perform with mesh 

refinement for a problem involving a smooth solution 

but one which is one degree higher than the element is 

capable of modelling.  For this problem the effectivities 

of a number of other error estimators are reported for 

comparison.  Finally, Problem 4 shows how the error 

estimators perform in the presence of a singularity in 

stress. 

 

For all four problems it is clearly seen that the simple 

expedient of applying the static boundary conditions to 

the estimated stress field results in higher quality error 

estimation.  This is evidenced by the fact that β 2
b  is 

closer to unity than β 2  and that 
)

U b

2  is always close to 

and is generally less than 
)

U2 .   

 

For Problem 1, where the effectivity of EE2  is strongly 

affected by the level of distortion (see Fig. 7), it is seen 

that application of the static boundary conditions leads 

to an error estimator EE b

2  that is virtually unaffected by 

the level of distortion present in the mesh.  The process 

of transforming the finite element stress field into one 

which is continuous and then into one which is 

continuous and boundary admissible is shown for 

Problem 1 in Fig 8(b,c and d).  The improvement in the 

pointwise quality of the estimated stress field through 

application of the static boundary conditions is clearly 

seen in this figure and is reflected in the value of 
)

U b

2  

when compared with that of 
)

U2 . 

 

For Problem 2 similar improvements are also noted 

with EE b

2  providing significantly more effective error 

estimation than EE2 .  Note, with respect to this 

problem, that β 2
b  appears to be converging but not 

monotonically. The reason for this is felt to lie in the 

coarseness of the approximation of Mesh 1 both in 

terms of the mesh discretisation and in terms of the 

geometry; the circular arc is being approximated by 

two lines.  This mesh also produces a situation where, 

whilst being close to each other, 
)

U b

2  is greater than 
)

U2 . 

 

For Problem 3 similar improvements in the quality of 

the error estimation observed for the previous two 

problems are also noted.  It is interesting to observe, for 

this problem, that β 2
b  is always greater than unity.  This, 

in turn, implies that the strain energy of the estimated 

error is greater than that of the true error.  This 'upper 

bound' type of behaviour is typical for error estimators 

that use statically admissible estimated stress fields (see 

reference [10] for example).  However, although the 

estimated stress field of EE b

2  does satisfy equilibrium 

on element interfaces and at the static boundary of the 

model, nothing has been done to enforce internal 

equilibrium and, as such, in general one cannot expect 

this upper bound type of behaviour.  Indeed, for 

Problem 1 and for Mesh 1 of Problem 2, β 2
b  is less than 

unity. 
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For Problem 3 the effectivity ratios for a number of 

other error estimators are presented.  These are 

discussed in order of appearance in Table 3.  Error 

estimator EE p  is a modified version of the error 

estimator proposed by Zienkiewicz and Zhu in which 

the unique nodal stresses are recovered using a patch 

recovery scheme [6].  The modification that has been 

applied takes the form of a re-definition of the co-

ordinate system in which the patch is defined (see 

reference [19]) and has been made to overcome the 

problem of ill-conditioning (and possible singularity) of 

the equations used to recover the unique nodal stress 

whilst using the bi-linear form of the stress surface 

recommended in [6].  The performance of this error 

estimator is comparable, and slightly better than that of 

EE2 .  It is, however, significantly less effective than 

EE b

2 .  Recent studies [17] have demonstrated that 

similar improvements in effectivity by applying the 

static boundary conditions, here demonstrated for an 

error estimator using simple nodal averaging as a 

means for determining unique nodal stresses, can also 

be achieved when using a patch recovery scheme for 

achieving unique nodal stresses. 

 

Error estimator EEZZ  is the original error estimator 

proposed by Zienkiewicz and Zhu in their 1987 paper 

[5] and uses a global least squares fit between the 

continuous estimated stress field and the finite element 

stress field as a means of obtaining unique nodal 

stresses.  This error estimator is significantly more 

costly than the other ones detailed in this paper due to 

the fact that the computations required to recover the 

unique nodal stresses are performed at the global level 

(i.e. for the whole model simultaneously) rather than at 

the element or nodal level.  The performance of this 

error estimator can be seen (c.f. Table 3) to be not as 

good as those that use the cheaper, local computations 

i.e. EE2 , EE b

2  and EE p .   

 

Finally, results for the error estimator EE4  have also 

been reported.  This error estimator is similar to EE2  in 

that it uses simple nodal averaging to achieve the 

unique nodal stresses.  However, it differs in two 

significant ways.  Firstly, for elements involving nodes 

that are attached to only a single element, a 

modification factor is applied to take account of the 

fact that no error is detected at such nodes (the nodal 

averaged values of stress are identical to the finite 

element values).  Details of this correction factor can be 

found in reference [15].  Secondly, and more 

significantly the way in which the integration of the 

strain energy of the estimated error is performed is 

different.  Whereas in all other error estimators detailed 

in this paper this quantity is integrated using the 

appropriate Gauss quadrature scheme i.e. using a 2x2 

scheme yields exact integration for undistorted 

(parallelogram shaped) elements, EE4  uses a method of 

integration, termed nodal quadrature, which is 

approximate even for undistorted elements.  It has been 

shown [15] that the nature of this approximation is such 

that the strain energy of the estimated error achieved in 

this manner is always greater than that which would 

have been achieved using an appropriate Gauss 

quadrature scheme.  This leads to the very high 

effectivity ratios detailed in Table 3 and gives an 

explanation for the lack of asymptotic exactness 

exhibited by this error estimator. 

 

The singularity in stress makes Problem 4 a challenging 

one for the element under consideration.  However, 

even with such poor finite element approximation the 

enhancement in quality of error estimation obtained by 

applying the static boundary conditions is dramatic c.f. 

Fig. 17. 

 

In conclusion, this paper has attempted to demonstrate 

the increased effectivity of error estimators that can be 

achieved by the simple expedient of applying the static 

boundary conditions to the estimated stress field.  This 
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increase in effectivity is significant especially for 

coarse and distorted meshes where effective error 

estimation is most called for.  With the current trend in 

pre- and post-processors being such that geometrical 

and boundary condition information is available after 

completion of the analysis stage, it is a relatively simple 

task to code this facility into existing finite element 

software.  However, it should be noted that the studies 

presented in this paper pertain to a particular element 

type, namely, to the standard four-noded Lagrangian 

displacement element. The extension to higher order 

elements such as the eight-noded serendipity element is 

not (as has often been surmised) straight forward for it 

is well known, and has been widely reported [4] that for 

the eight-noded element consideration of lack of 

interface equilibrium alone is insufficient to provide 

effective error estimation. 
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(a) True stress field { }σ  

 

 

(b) Finite element stress field { }hσ  
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(c) Continuous estimated stress field of EE2  (β 2 20 71 103 7= =. .,  

)
U ) 

 

 
(d) Continuous, boundary admissible estimated stress field of EE b

2  (β 2 20 82 7 7b bU= =. .,  
)

) 
 
 

Fig. 8. Stress fields for Problem 1 

 
 


