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Abstract

The main topics of this paper, sub-modelling and associated boundary conditions, are presented
in two parts. Thefirst part details a general method for evaluating consistent displacement or traction
modes for hybrid equilibrium plate modelsto represent arbitrarily specified boundary conditions. The
inheritance of boundary conditionsin a process of uniform h-type refinement is considered as a particular
case. The second part investigates the methodol ogy and performance of a sub-modelling technique
involving equilibrium elements which has the aim of recovering alocal quantity of interest with greater
accuracy than that directly obtained from the original global or parent equilibrium model. A crucial stepin
thistechnique is the transfer of appropriate boundary tractions from the parent model to the sub-model
(child). The sub-modelling techniqueis presented initially based on the extraction of asingle element for
h- and/or p-type refinement into sub-models. A more general form of sub-modelling isthen presented in
which the boundary of the sub-model does not coincide with that of an element, or patch of elements, in
the parent model. This requires the evaluation of modes of traction around an arbitrary region, and a
scheme to achieve thisis presented and demonstrated using, as an example, a geometric perturbation of a
single element extraction. The performances of sub-models are compared using both compl ete sets of

traction modes and reduced, or basic, sets.

Keywords: Static and kinematic Boundary conditions; Sub-modelling technique; Hybrid-stress elements;
Equilibrium elements; P-type; Plate-membrane problems
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1. INTRODUCTION

Hybrid-stress or equilibrium dements are a particular type of finite eement (FE)
which can provide statically admissible solutions to problems in structurd mechanics. The
formulation of such dementsis more complicated than thet of conventiond displacement
eements but the vaue of obtaining solutions for which the stressfidd isin equilibriumin a
poi ntwise sense throughout the mode! is congdered to judtify this additiond complexity. In
particular, many dructura design criteriainvolve placing upper limits on the vaue of Satic
variables, e.g. the so-caled membrane and bending stresses used in, inter alia, pressure
vesse design codes, eg. ASME [1]. With equilibrium eements the amplitudes of these
variables form part of the basic solution and do not require additiona post-processing asin the
displacement method. Unlike digplacement modds, for equilibrium models these Setic
variables are dso in equilibrium with the goplied loads. In conjunction with the lower-bound
theorem of plagticity, equilibrium eements dso provide anaturd route to obtaining safe
solutions to structurd problems. Equilibrium eements have dso found usein error estimation
for conventiond digplacement dements [2] and from the viewpoint of the practicing engineer
offer amore intuitive or natura gpproach to finite dement andysis (FEA) [3].

The equilibrium dement consdered in this paper is a variable degree or p-type plate-
membrane dement the basic theory of which was presented in [4]. Other equilibrium dements
such as axisymmetric, [5], plate-bending, [6], and solid continuum, [7], are available, and
much of the work presented in this paper is directly gpplicable to those other dement types.
The equilibrium dement differs from many conventiona eementsin that the degrees of
freedom are referred to eement edges rather than to nodes. The consistent method of
gpplying boundary conditions then involves the specification of distributions of edge
displacement and/or traction. Section 2 presents a method of calculating these ditributions for
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arbitrarily defined displacement and stress fields and provides examples of force and
displacement driven problems. The incluson of such afadility, smilar to the Continuum-
RegionElement method [8,9], in a FE program enables the user both to develop an
understanding of the approximation inherent in the particular form of eement being used and,
aso, offers a program that can provide its own vaidation problems. In closng Section 2t is
noted that most routine goplication of FEA involves specifying nothing more than the so-cdled
basic traction distributions (or modes) which correspond directly to resultant forces and
moments.

Section 3 invedtigates the methodology and performance of the sub-modelling
technique as goplied to equilibrium dements. In structurd FEA sub-moddling is often used
[10] to obtain accurate stresses from arefined or sub-model of the region of interest with
boundary conditions applied from the results of a coarser globa or full-modd. For
displacement- based models, where the basic solution is a piecewise continuous displacement
fidd, the mogt direct form of boundary conditions for the sub-model are displacements or
kinematic boundary conditions (KBCs) obtained by interpolaion of the full-model
displacement fidd dong the boundaries of the sub-modd. In contragt, for equilibrium
elements, where the basic solution is a piecewise Saticdly admissible Sressfidd, the natura
form of boundary conditions for the sub-model are boundary tractions or static boundary
conditions (SBCs) obtained by evauating the tractions corresponding to the full-mode stress
field dong the boundaries of the sub-mode. The sub-modeling technique for the equilibrium
dement isfirg established using a sub-modd congsting of asingle eement extracted from the
ful-mode. Adopting this so-caled element-extraction approach, two forms of sub-modd
refinement, viz. p-type and h-type, are considered [11]. With h-type refinement the refined

sub-modd needs to inherit the boundary conditions of the origina sub-mode discussed in the
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firgt part of the paper. The performance of the sub-modd is evauated using both the
complete set of traction modes and a reduced or basic set. In cortrast to the element
extraction method, the boundaries of a general sub-model will cut acrossthe interior of
dementsin the full-modd and dthough satisfying interdement equilibrium, the stressfidds are
not generaly continuous across such interfaces. The tractions that need to be applied to the
edge of a sub-modd will therefore be piecewise digtributions, the number of pieces being
equd to the number of full-modd primitive eements that the sub-mode boundary cuts. The
traction modes on the edge of the sub-model, being continuous, are unable to modd such a
form of applied loading exactly and so the evidence of sub-moddling performance in the
presence of basic traction modes, obtained using the eement extraction gpproach, is utilised in
the generd sub_modd. The nature of the gpproximation of discarding higher-order modes of
traction isinvestigated and the performance of the genera sub-modeling technique evauated.

Throughout the paper numerical examples are used to demongtrate and confirm the
proposed methodologies and the paper closes in Section 4 with recommendations for further
work.
2. APPLICATION OF CONSISTENT BOUNDARY CONDITIONS

The application of kinematic or static boundary conditions for hybrid-equilibrium
eementsis through the specification of edge displacement or traction modes. For the hybrid
element consdered here the interna stressfidlds are polynomid of finite degree p. The edges
may be curvilinear, and edge displacements are dso polynomid of degree p. The

displacements are defined in terms of the complete set of Legendre polynomids, P,, where
n=01..,p asinEq. (1).

_ d (-D'(2n- 2)! L, (n-2i)
Re)=a S Tins 2
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where N =n/2 fornevenand N =(n- 1)/2 fornodd [12], and z isthe non-dimensiond
edge parameter, ranging from —1 to +1, based on alinear map. Thefirg two polynomias
(degreen=0and n=1), for example, are R, =1 and B =z .

The Legendre polynomids, with values +1 at the ends of an edge, are used as the

basis for norma and tangentia edge displacements, {u} , 0 that displacements at apoint z on
an edgearegiven as.

{u}=[viv 2
where {v} isavector of amplitudes for the displacement modes or generalised

displacements [V] isformed as the Kronecker product in Eq. (3) for the plate membrane
element with curved edge displacements of degree p.

N ..gc sg
M=[p@) P@) Pe) - Pp(z)]AgS N 3

where ¢ and s are the direction cosines of the outward normal to the curved edge rdative to a
Cartesian frame of reference. The two rows of [V] refer, repectively, to the norma and
tangential components of displacement.

Edge tractions are congdered in polynomia form of degree p. Conjugate distributions
of edge tractions {t} are defined in Eq. (4).

{t}=[cKq} (4
where {g} isavector of generalised forces and the columns of [G] form adual basisto that

for displacements. This means that edge work can be evauated from the scalar product:

Mg} = olu}" {ttde={}" v]'[clde{d}p ¢v]'[G]de=]I] (5)

edge edge edge
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For adraight edge, the orthogondity of the Legendre polynomials in[V] impliesthet
the dual basisis unique and that[G] = [V ]| S| where[9] isthe diagona scaling matrix defined in
Eq. (6).

1

[s]:%dvr[v]deté (6)

Eedge

Thereciproca of adiagond coefficient, s, , of the scaling matrix isgivenin Eq. (7).

S L N R -
S”__%‘ _2_93‘ "2 (2+1) (2 +1)

where r =(2i +1), (2i +2) and| isthe edge length.
For acurved edge, however, the formation of [G] may be more problematic.
2.1 The General Case

The generd case of gpplication of boundary conditions occurs when they are
determined from known displacement or stressfidds. Thus, for example, KBCs might be
derived from some applied displacement field, {Ti} , and SBCs from applied tractions {t }

which might correspond to an applied stress field {s }
2.1.1 Consistent KBCs.

Prescribed displacements {G } are mapped into consistent generalised displacements
{v} by requiring that the same work be done by al generalised forcesin moving by {0} or
{u} (=[VHV}). Thisleadsto Eq. (8).

olcl'{i}de= o' [vide{v} ={} ®

edge edge

As a demondiration of the gpplication of KBCs the isotropic nor+polynomia displacement

field of Eq. (9) isapplied to the boundary of an isosceles triangle:
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{g}:_vxw }1@ ©
2 .1%

The displaced shapes are shown in Fig. 1 for increasing levels of p. With anon-polynomia

displacement field the edge displacement modes cannot fit exactly but, instead, converge with

decreasing vertex discontinuity as the edge displacement degree p isincreased.

iy

vertex discontinuity

displaced shape

00)

(exact) ’ (p=0)

(p=1) (p=2)

Fig. 1. Convergence of KBCs (generd case).
2.1.2 Consistent SBCs

Prescribed tractions {t~} are mapped into consstent generalised forces {g} by
requiring that the same work be done by the prescribed tractionsand {t} (= [G]{g}) when

displaced by al generaised displacements{v}. Thus.

OV] {f}de= v]'[c]de{g} ={g} (10)

The generaised displacements should include the rigid body modes to ensure that the
generalised forces are statically equivaent to the prescribed tractions. As a demonstration of
the gpplication of SBCs the non-polynomid (transcendenta) stress field of Eq. (11) isused to

define boundary tractions to the square region of Fig. 2.
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' cosg (1- gn q—s’n ﬂ)u

is, U 1' 2 2 2.i.

N g 3]
S{=i{S,y=——=jcos—(1+9n—=9n—)y 11
s} Sy o) 5 ¢ >SNy (11)

 §in = cos- cos =) L
wherer and q are polar ordinates.

Thisdressfidd isa Trefftz fidd (daticaly and kinematically admissble) and isfor a
plate with a crack centred at the origin (0,0). To avoid infinite stresses and therefore tractions,
the region has been shifted 0.1 unitsin the pogitive X-direction.

A

(0.1,1) 11)

normal

~

tangential (0.1.0) (1.0)

(exact) (p=1)

A1)

Fig. 2. Convergence of SBCs (generd case).

The norma and tangential components of edge traction are plotted as ditributions for

each edgein Fig. 2. The convention used isindicated in Fig. 3 where anorma and tangentia
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vector pair is chosen such that the edge norma vector points away from the interior of the
model with the tangentia vector rotated 90° from the norma vector in the direction X to .
The norma and tangentid tractions are digtinguished in Fig. 2 by noting thet the normd

tractions have greater amplitude than the tangentia ones.

normal tangential

| ﬂ
&tangentl al <::|

1 —rorma I}
D) 4

2.2 The Particular Case of Uniform h-Refinement

Fig. 3. Sign convention for edge tractions.

Having established the congstent methodology for gpplying generd forms of static and
kinematic boundary conditions to an arbitrary mesh of equilibrium eements, the particular case
of trandforming these boundary conditions onto a uniformly refined mesh is now considered.

In uniform h-refinement an edge is divided into equa length portions asindicated in Fig. 4 for a

graight edge divided into two.

|—|>Zo |—|>Z " |—|>Z .
g ; ¥ I o 4 1 ¢ 4
(& origind edge (b) new edges (exploded view)

Fig. 4. Uniform h-refinement of an edge.

The non-dimensiond ordinates are z , for the origind edgeand z , and z , , respectively, for

the two new edges.
When sub-modedlling is considered in section 3, it will generdly be necessary to

distinguish between two types of edge, i.e. internal and externd. In this context interna edges

9
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become externa for a sub-model whereas external edges remain externd to the sub-mode.
The trestment of the boundary conditions on interna edges which become externd must use
the digplacements or tractions derived from the results of the globa model as boundary
conditions.

Externa edges, on the other hand, will continue to use directly the prescribed
boundary conditions. Asademondration of the gpplication of KBCsthe triangle used earlier
(seeFg. 1) isuniformly subdivided into three quadrilateral ements. Fig. 5illudrates
consstent KBCsfor the refined models. It should be emphasised that each FE model cannot
digtinguish between the exact and the consstent KBCs. Fig. 5 illustrates how the

displacement discontinuities converge towards zero with increasing p.

;Q%

(P=2)

Fig. 5. Convergence of KBCs (particular case of uniform h-refinement).
Smilarly, the square used earlier (see Fig. 2) is uniformly subdivided into four
quedrilaterd dlements. Fig. 6 illugtrates the consastent SBCs for the refined models.

The traction discontinuities are observed to converge towards zero with increasing p.

10



A.C.A. Ramsay, E.A.W. Maunder / Finite Elementsin Analysis and Design

- ——

e — . —

4

(exact) (p=1)

o

interelement
traction ——=| '——=‘
discontinuity J

Fig. 6. Convergence of SBCs (particular case of uniform h-refinement).

2.2.1 KBCsfor Internal Edges

For uniform h-refinement the boundary displacements on internal edges, {7, } , are
defined in terms of generaised displacements from the analysis of the globad modd:

CSSIANA (12)
where the subscript o indicates an origina edge.

The generaised displacements for anew edge, e,, are:

Mol=[s.] v I {0, Jde, =[] ¢lv, 'V, e, {v.} (13)

1
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2.2.2 SBCsfor Internal Edges

For uniform h-refinement the boundary tractions on internal edges, {t~n} , aredefinedin
terms of generdised tractions from the andysis of the globa modd!:

ftt=vIs. Koo} (14)
where the subscript o indicates the origina edge.

The generalised forces for the new edge, e, are:
{9t = (V] {thde, = [V Ve lde,[s.Ja.} (15)

2.2.3 The Mapping Matrix
It is observed that the transformation of both kinematic and tatic boundary conditions

from origind to new edges (Egs. 13 and 15) involve the same mapping matrix [M ] ,1.e
w=[slMfv} and {g,} =[M] s g} where:
M]= v, ] [V, Jae, (16)
After divison of an edge into two equa lengths the transformations between origind

and new non-dimengiona edge parameters are;

Z =2z

n

+1 or zO:%(zrﬁl) @

o]

respectively for thenew edges - 1£z_ £0 and 0£z , £ +1.
The coefficients M, arezerounless r,s=(2j - 1),(2 - 1) or 2j,2i forindicesi,

which rangefrom O to p. Then:

Mrs = lel) (Zo)Pj (Z n)dzn (18)

N |5

where | | isthelength of the new edge. Such coefficients when i and j rangefrom 0to 2, are

givenin Teble 1.
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Table 1: Integrd termsin the mapping meatrix

degree of Legendre polynomial value of integral

origina now (R &P, )z,

-1£z,£0 0f£z, £+1

—

0 0 2 2
0 1 0 0
0 2 0 0
1 0 -1 1
1 1 13 13
1 2 0 0
2 0 0 0
2 1 -1/2 12
2 2 /10 /10

2.3 Boundary Conditionsin Practical Finite Element Analysis

The aforementioned methodology for applying boundary conditions derived from
arbitrarily defined stress and displacement fidds isidedly suited to the so-cdled
benchmarking of a FE program. The provison of such routines within the code leadsto a
program with the cgpability of producing its own benchmark problems which, in addition to
providing aready source of problemswith which to vaidate the code, offers a useful
educationa festure to the novice user.

In contrast to the inverse problem of deriving boundary conditions from known stress
or displacement fidds, practica FEA is generaly concerned with finding the stress and/or
displacements due to a particular form of gpplied loading. Thisloading is often rather smplein
form involving, in terms of datic variables little more than application of dress resultants, i.e.
resultant forces and moments, and in terms of kinematic variables smplerigid-body restraints,
or dightly more complicated forms to enforce conditions such as symmetry.

13
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It isworth noting here a practica advantage of loading through € ement edge modes.
In conventiond finite eements, where noda variables are generaly referenced to agloba
coordinate system, it is necessary, in order to apply conditions such as symmetry, to transform
noda variablesinto aloca system which isnorma and tangentia to amodd edge. In contrast
to this, the edge displacement modes used for the equilibrium dement are naturaly digned in
this manner thereby smplifying the application of boundary conditions and avoiding potentid
user errors induced by incorrect specification of loca freedoms.

In the mgority of practical FEA the gpplied loading involves specification of nothing
more than stress resultants. The reason for thisis that the higher order modes of load are
generdly unknown and, through St Venant's principle, are usualy not significant to the stress
field remote from the region of loading.

If the stress resultants for an edge are N, T and M, asilludrated in Fg. 7 for astraight

edge, then the relationship between the stress resultants and the generdised forcesis.

iNg é O OU|91u
%Ty 33 1 0gfgy (19)

imp @ o |/2gl 9:h

where| isthe edge length and g, to g; are the first three components of {g} in Eq. (4).

| RY
|

M
Tiaction Chatnbadaons Stiess Resdtants

Fig. 7. Badc edge tractions modes and corresponding stress resultants for an edge.

14
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3. SUB-MODELLING

The sub-moddling technique involves the generation of arefined sub-mode whichis
then loaded with boundary conditions obtained from a full-mode such that the solution
quantity of interest, typically a point vaue of stress, may be obtained with superior accuracy.
A graightforward approach to sub-modd creetion that is particularly suited to p-type e ements
isthat of element-extraction. In thisapproach ardatively cruddy discretised full-modd is
used with sufficient elements to capture the geometry of the problem and, perhaps, with some
biasing towards regions of potentid interest. The basic sub-modd then condtitutes a complete
eement of the full-model for which boundary conditionsin the form of edge traction modes are
reedily available from the full-modd results. The sub-modd can then be refined with amixture
of p-refinement and h-refinement as appropriate. One could, of course, have performed such
locd refinement in the full-model, however, the eement extraction technique offersamode of
reduced computational size that islesslikely to be affected by any potentid ill-conditioning
associated with locd refinement of the full-model. A more genera case of sub-modd can be
envisaged in which the sub-mode boundaries do not lie dong edges of the full-modd. In this
ingtance boundary conditions are not immediately available and some form of additiona post-
processing needs to be applied to the full-modd resultsin order to achieve suitable sub-model
loading.
3.1 Sub-Modelling — A Classical Problemwith Practical Sgnificance

A classica problem gppropriate for the study of sub-moddling isthat of the plate-
membrane with acircular hole. The hole concentrates the stress and the aim isto obtain an
accurate prediction of the peak stress. This problem characterises much of the routine FEA
conducted in the fid of practica mechanica engineering where, typicaly, such pesk stresses

limit the fatigue or creep life of acomponent. This problem has an anadytica solution with

15
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which the FE results may be compared if modelled correctly. Correct modeling requires that
the boundary conditions be derived from the andytica stressfield for the particular geometry
of the FE moddl. The anayticd stressfield in Eq. (20) gpplies to an infinite plate subjected to

auniform uniaxid tendon at infinity.

2 4
S, =S,{1- a—z(g cos2q + cos4q) +ga—4 cos4q}
r r

a® 1 3a*
s, =5,{0- r_Z(E €0s2q - cos4q) - Er—4cos4q} (20
2 4

a“ 1. : 3a” .
ty =s,{0- r—z(Esn 2g +sn 4q)+Er—43n4q}

wherer and q are polar position ordinates, a isthe holeradiusand s ,, isthe (uniform) value
ofs ar=¥.

For aplate of finite dimensions, the distribution of stress on the boundaries is non-
uniform and whilst the problem is often modelled by assuming uniform traction ditributions,
the andyticd solution is only valid when the non-uniform distributions are taken into account.
The non-uniformity of the traction digtributions, which is only of practical sgnificance when the
dimension of the hole gpproaches that of the plate, are evident for the problem investigated
here where the dimension are chosen such that the plate is square of semi-length, |, and the

ratio of semi-length to holeradiusisb.

point of stress concentrak&n\

Fig. 8. Anaytica boundary tractions around the quarter plate.

16
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The FE modd used for this problem utilises symmetry by modelling only a quarter of
the plate. The boundary tractions due to the analytica stress field are shown for the quarter
plate in Fig. 8 where the normd tractions are distinguished by their dominance over the
tangentia traction components. Although SBCs are known around the entire boundary, edges
lying on the planes of symmetry will be congrained with symmetric KBCsin dl analyses.

The quarter plate is designated as the full-model and the FE meshes are shown in Fig.
9. The basic mesh, designated as h=0, conggts of Sx eements with a biasng towards the
point of stress concentration. The other two meshes are successive uniform refinements of this
basic mesh. The element extracted for the sub-mode is shown shaded in the basic mesh.

Another form of approximation concerns modelling the shape of the circular hole.
Mogt types of finite dement, including the equilibrium dement considered here, use polynomia
formsfor lement edges. For this example a quadratic form of edge will be used. The
andytica solution in Eq. (20) remains valid for the FE model provided corresponding nor+

zero tractions are derived and applied to the perimeter of the hole as modelled.

h=0 (basic) h=1

L[ ////
[[////
L/
W

element for extraction
Fig. 9. Finite dement meshes— full-modd.

The tractions gpplied to al the FE gpproximations of the circular arc are shown for the
basic mesh in Fig. 10. Inthis case the arc is approximated by three piecewise quadratic edges

defined so that end and centre points lie on the arc. The tangentid tractions are more

17
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sgnificant than the normal ones and the discontinuity in dope between adjacent edges leads to

the discontinuities in traction seen in the figure.

tangential

/ normal

—

1% of sigmainfinity— - —
—_— -

Fig. 10. Andyticd boundary tractions around the FE gpproximations of the circular arc.

In this particular problem the quantity of interest isthe value of s, at the top of the arc
where it has an exact vdue of 3sy. The performance of the full-mode under p- and h-
refinement is shown in Fig. 11 where contour plotsof s, are shown together with the
maximum vaue of this quantity whensy = 1. Rapid convergence of the quantity of interest is
observed with both forms of refinement. The stress filds within eements exhibit interna
discontinuities particularly for lower levels of refinement. These occur because the eements
used are actudly macro dements conssting of an assemblage of triangular primitives as

discussed in section 3.3.

18
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levd of h-refinement
0 1 2

) 7’ M
2.87 2.97
8 3.0C
§ 2.7
S 2.5
g o 2.6
5 2.00
g 1.7
= 2.96 2.99 Lo
(90]

2.98 3 (exact)
Fig. 11. Convergenceof s , for full-modd.

3.2 Sub-Modelling — Particular Case of Element Extraction

Thisform of sub-modelling involves asub-mode congtituting the region of a complete
dement in the full-modd with SBCs taken directly in the form of edge traction modes from the
full-mode when p = 1. The performance of the sub-modd, identified in Fig. 9, under p- and
h-refinement is shown in the | eft-hand portion of Fig. 13.

Thefirg sub-mode mesh (p=1, h=0) produces, as expected, identical resultsto the
corresponding full-mode. The convergence of the quantity of interest with both types of
refinement is strong but appears to be towards avalue of 2.85 rather than the exact value of
3.00. Thisisnot unexpected as the full-model, which was used to provide the boundary

conditionsfor dl these sub-models, was fairly crude and the amplitudes of the basic tractions
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were different from what they should have been — see Fig. 12. It is pleasing, however, to note

that the improvement in the result is sgnificant (just short of 10% of the exact value) and isin

the correct direction. Convergence of sub-modds to the exact vaue using full-models of

higher degrees of p-refinement, although not reported here, has been confirmed.

dge a

i level of h-refinement
1 2
a b a b a b
N | 19270 03971 1.9013 0.3890
1 v 07585 -0.0533 07514 -0.0534
M | -01438 0.03493 -0.1854 00528
E N 19150 04015 1.8917 0.3802
€
E . 7 0.7454 00519 0.7556 0.0357
2
-
B M| -01852 0.0528 -0.1867 0.0600
N 1 8920 0.3873 1.8908 03781
3 g 07516 029 07578 -0.0350
M | -0.1862 0.0580 -0, 1867 00622
(exact)

Fig. 12. Convergence of internd edge siress resultants for full modd.
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levd of h-refinement

full traction modes basic traction modes
0 1 2 0 1 2
281 257 2.73 2.84
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‘c 3.0C
Ko} 2.7¢
§ 2.5
™ 2.2¢
2.0C
1.7¢
2 83 1.5(C
<

3 (exact)

Fig. 13. Convergenceof s , for sub-mode - full tractions from full-modd with p=1, h=0.
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3.2.1 Sub-Modelling — Element Extraction with Basic Traction Modes
As dready noted, the only traction modes required to transfer overal equilibrium between
elements are the basic tractions. The so-cdled higher-order traction modes are sdf-bdancing onan

element edge and only influence the stress field locd to the edge.

/ normal -
\ 0.2
; , 0.2C
0.1%
0.1C
0.0¢

0.0C

tangentid basc ——»

7

(8 Basic and complete tractions (b) von Mises stress due to higher-order modes

tangentia complete

Fig. 14. Basic and complete tractions for sub-modd - full-modd with p=1, h=0.

The performance of the sub-modd under p- and h-refinement and using basic tractions only
isshown in the right-hand portion of Fig. 13. Theresults are interesting in that dthough loaded with
the higher-order tractions removed, the results for the quantity of interest are no worse and in most
cases alittle better than those produced using the complete set of tractions. The difference between
complete and basic tractionsisillugtrated in Fig. 14(a) for p=1. The linear tangentid traction modes
(these being the only higher-order modes present for alinear element) are set to zero on edges a and
b. Inthis particular example these quantities are smal and a measure of the effect of the higher-order
modes on the stress fidd is given in Fg. 14(b) which shows the von Mises stress contours resulting

from the higher-order traction modes acting aone.
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3.3 Sub-Modélling — General Case

In the generd case of sub-moddling the edges of the sub-modd may cut acrossthe
boundaries of dementsin the full-model. Such edges form amodel section which may be arbitrary.
Asthe gressfidd is generdly not continuous across interdement boundaries a method for gpplying
boundary tractions to the sub modd will need to cope with discontinuous boundary tractions. The
issue of discontinuous stress fields is exacerbated by the fact that equilibrium dements are actudly
macro dements formed, respectively for the triangle and quadrilatera macros, from three and four
triangular primitive dements as shown in Fig. 15. The primitive ement boundaries form lines of
potentid stress discontinuity as observed in the contour plots of Fig. 11 and Fig. 13 in particular for
the less refined models.

The position of the macro assembly point, P, can be chosen arbitrarily for the triangular
macro but, in order to avoid maignant spurious kinematic modes (see reference [4]), for the
peicewise linear quadrilatera, must be located at the intersection of the diagonds as indicated by
dotted linesin thefigure. For dl problems consdered in this paper, where the quadrilatera is used

and for dl degrees of interna stressfield consdered, the intersection of the diagonas locates P.

N
|

(8 triangular (b) quadrilatera
Fig. 15. Standard geometric forms of macro element.

3.3.1 Sub-Modelling — Basic Tractions on a Model Section
As dready described, the FE stresses dong an arbitrary model section through part or al of

the modd will, generdly, be discontinuous. If amode section represents an edge of a sub-model
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then the method of mapping to congstent continuous Staticaly equivaent tractions needs to be
adopted. As aready demonstrated, higher-order traction modes are not Strictly required for
satisfactory sub-modd performance and it is then sufficient for current purposes to establish only
basic tractions dong an arbitrary modd section. Thisis achieved, for a straight edge, by use of Eq.

(20) with the columns of [V] corresponding to displacements representing the three rigid- body

modes.

An example gpplying this method is shown in Fg. 16. Thefull-modd of the (quarter) plate
with circular holeis used and the model section is defined to lie from (1,9) to (9,1). Asinthe plotting
of edge stresses presented previoudly, the stresses are plotted normal to the section according to a
section coordinate system defined as for an edge. The piecewise distributions of norma and
tangential stress are shown together with the linearised distributions which correspond to the stress
resultants that are statically admissible with the piecewise distributions.

With the section coordinate system used, and for the particular distributions of stress, the
normd stresses lie below the section whilst the tangential stresseslie above it. The magnitudes of the
section stress resultants (see Eq. (19)) are dso listed in Fig. 16. The piecewise traction

discontinuities are observed to decrease with increasing p.

tangential

- 7 normal\ \
/ \\ N\

i N\ N
A\ NN ~

N \}
p=1 (N=5.39, T=-5.75, M=-2.87) p=2 (N=5.37, T=-5.85, M=-3.23)

Fig. 16. Actud and basic tractions on amodel section.
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The method of gtress linearisation is common in the context of structurd desgn assessment
whereit is used to obtain membrane and bending stresses the magnitudes of which can be compared
with dlowable materid vaues. The method finds particular gpplication in pressure vessel design and
andydsinvolving axisymmetric modds. It isworth noting in this context that with the strong form of
equilibrium offered by equilibrium dements, sections that arbitrarily bisect the structure will dways
provide stress resultants in equilibrium with the gpplied loading irrespective of theleve of mesh
refinement. Contrast this with the displacement dement where dthough nodd forces provide an
equilibrium set, eement stresses integrated in the manner described above over an arbitrary bisecting
section will not generdly equilibrate with the gpplied loading until the mesh is sufficiently refined. The
practice of generating membrane and bending sectiond forcesin thisway iswide-spread in FEA
based on displacement elements, and can lead to disasteroudy erroneous results as occurred with
the design of the Sleipner platform [13]. The reason that the stress resultants shown dong the
section in Fig. 16 change with mesh refinement is that the section does not bisect the structure.

The more generd case for sub-moddling is demondrated by varying the sections which
define edges aand b of the angle dement sub-modd in section 3.2. Vertex v joining these two
edges, asindicated in Fig. 17, ismoved in adirection at 45° to the X-axis. Small perturbations A,
and A in the coordinates of v are considered in order to assess the sengitivity of the quantity of

interest to such perturbations. Theresultsfor D, =D, = +0.2 are compared with that of the
unperturbed geometry (D, =D, =0) inFig. 17. The resultsfor the unperturbed geometry are the

same as presented in the right-hand side of Fig. 13 (p=1, h=0). The resultsfor the perturbed

geometry produce peak vauesof s, that are virtualy identica to those from the unperturbed

geometry.
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h=0
D, =D, =-0.2 D, =D, =0 D, =D, =+0.2
\'
I'4
—
11
o
2572 2573 2573

Fig. 17. Vaidionof s for sub-modd - ful-modd with p=1, h=0.

4.0 Conclusions

The moativation for conducting the work presented in this paper was to establish and
demongtrate a methodology for sub-moddling using equilibrium dements. In order to do thisit was
necessary to consider how boundary conditions, both kinematic and static, are applied to such
elements and how they are inherited from a parent mesh to its uniformly refined child mesh. A smple
form of sub-moddling usng an dement-extraction approach was then demonstrated both in the
presence of complete and partial or basic traction modes. Both sets of tractions provided smilar
results demongtrating the feasibility of using basic tractions aone for genera sub-modelling where
sub-model edges do not coincide with edgesin the parent model. In preparing a methodology for
sub-modelling in the generd case a scheme for extracting stress resultants from an arbitrary model
section was required. This scheme was then used to determine the amplitudes of the basic traction
modes for sub-modes having dightly perturbed geometry from that used previoudy. In this manner
the generd method of sub-modelling was demondirated.

The results presented in this paper indicate that it is possible to obtain good qudity point
quantities by using ardatively coarse and low degree full-mode followed by sub-modd andysisin

the region of interest. The results suggest that it is not necessary to use complete sets of traction
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modes on the sub-modd boundary and that the basic ones are sufficient. It also appears that for the
sub-modd, high leves of refinement are unnecessary.  The expected superiority of p- over h-
refinement is observed with two leves of h-refinement being required to achieve the improvement in
solution gained by only onelevd of p-refinement. A recommended refinement srategy in the sub-
modelling technique might then assume that converged results will be achieved by unit increasein
both h and p.

Further development of equilibrium eements continues to suggest distinct advantages over
the corresponding displacement type element. For example, amesh invariant ability to provide
daticaly admissible stress resultants on an arbitrary modd section leads to a safe method of
gructurd assessment in linear-dadtic FE andyss which has been known to fal with the more
conventiond displacement dements. It isof vaue, therefore, to explore these ideas further and this,
together with the consderation of sub-modelling with other types of equilibrium dement, will form the
basis for future work.
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