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SUMMARY 

 

In this article, the recently proposed patch recovery scheme of Zienkiewicz and Zhu [4] is applied to 

the basic four-node isoparametric displacement membrane.  The common configuration of a four 

element patch is considered.  It is observed, for this element and configuration, that the proposed 

scheme can produce results that are dependent on the co-ordinate system in which the patch is 

defined.  In attempting to overcome this problem the concept of a parent patch is proposed.  Results 

from an error estimator based on this concept and applied to a set of problems similar to those laid 

down in [3] are presented. 

 

INTRODUCTION 

 

Whereas, in general, the true stress field { }σ  is continuous, the finite element stress field { }hσ  is 

generally discontinuous across element interfaces as illustrated for a single component of stress on a 

patch of four elements in Figure 1(a).  This lack of continuity has traditionally been used for 

qualitative assessment of a finite element model,  and more recently as a means to quantify the error 

in a model. 

                
       (a) Discontinuous σh            (b) Unique nodal stresses          (c) Continuous σ~  

 

 

Figure 1 Achieving continuous estimated stress fields from discontinuous finite element stress fields 

 

Although the true error { } { } { }he σσσ −=  is usually unknown, an estimated error { } { } { }he σσσ −= ~~  

can be formed by assuming an estimated stress field { }σ~ .  Of the many ways in which an estimated 

stress field may be formed, those that determine { }σ~  such that it is continuous across element 

interfaces have received much attention [1],[2].  Continuous estimated stress fields are defined by 

interpolating unique nodal stresses { }s  over an element with the matrix N  which contains the 

same polynomial terms as the element shape functions.  Thus, for an element, { }σ~  is defined as: 

 

{ } [ ]{ }
(3x12)               

~ sN=σ
                   (1) 
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Given an estimated stress field { }σ~ , error measures such as the estimated percentage error α~  can 

then be formed for the element and for the model.  The reader is referred to Part I of the FEN 

articles [3] for a full description of the error measures used in this article. 

 

For the estimated stress field defined in Equation (1), different choices for the unique nodal stresses 

{ }s  will result in different estimated stress fields { }σ~  and, therefore, different error measures α~ .  A 

number of so-called simple error estimators in which the unique nodal stresses are chosen simply as 

the averaged nodal stresses were studied in Parts II - VI of the FEN articles [3]. 

 

An alternative method in which the unique nodal stresses are determined through a patch recovery 

scheme has been proposed in [4] and is illustrated for the considered configuration in Figure 2.  In 

the patch recovery scheme, for each component of stress, a polynomial stress surface σ p (shown 

hatched in Figure 2), with the same polynomial terms as the element shape functions, is fitted in a 

least squares manner to the finite element stresses at the superconvergent (stress) points [6] in the 

elements of the patch.  For the element under consideration there is a single superconvergent point 

at the isoparametric centre of the element. 

 

    

stress surface σP

  
Figure 2  Patch recovery scheme for a patch of four elements 

 

 

The stress surface is defined as 

 { }

(4x1) (1x4)               

aPp =σ
                                                           (2) 

 

where σ σ σ τp px py pxy= ,   or  and, for the element under consideration in which the shape functions 

are bi-linear, the row vector P x y xy= 1, , , . 

 

The component of unique nodal stress (recovered stress) is determined by evaluating Equation (2) at 

the appropriate node (patch recovery point).  The vector { }a , which is different for each component 

of stress, is determined by solving the matrix equation resulting from the least squares fit: 

 

[ ]{ } { }
(4x1)               (4x4) 

 baA =
      (3) 
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  , σ  , the summation is taken over all n  elements in the 

patch and σ σ σ τhi hx hy hxy= ,   or  evaluated at superconvergent point i .  For the configuration 

considered in this article n = 4. 

 

DEPENDENCE ON CO-ORDINATE SYSTEM 

 

In their original paper [4], Zienkiewicz and Zhu make no mention of the co-ordinate system chosen 

for the patch recovery scheme.  In the absence of any evidence to the contrary, one might be tempted 



to think that the patch recovery scheme yields results that are independent of the chosen co-ordinate 

system.  Unfortunately, though, this is not the case.  The dependence on the co-ordinate system 

manifests itself in three ways: 

 

 (i)   dependence on the position of the patch (l -dependence) 

 (ii)  dependence on the size of the patch (r -dependence) 

 (iii) dependence on the orientation of the patch (θ -dependence)  

 

The first two dependencies can be avoided by using the normalized local patch co-ordinate system 

subsequently communicated by Zienkiewicz, Zhu and Wu [5].  However, this co-ordinate system 

does not remove the dependency on the orientation of the patch.  In this article a parent patch 

concept is used to define a patch co-ordinate system which yields results that, in addition to being 

independent of position and size, are also independent of the orientation of the patch.  The various 

aspects of dependence are now described. 

 

a) Dependence on position of the patch (l -dependence) 

 

Consider a patch of four rectangular elements as shown in Figure 3.  For this configuration the patch 

recovery point is coincident with the centre of the superconvergent points.  The patch is displaced 

from the origin of  a co-ordinate system ( , )x y  by a length l .   
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Figure 3  Element patch to show dependence on position and size of patch 

 

The influence of the length l on the matrix A  (l -dependence) can be clearly seen by considering 

the case when r r r1 2= = .  If we define the parameter φ = l r  then the matrix A  may be written as  
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For l r>> >> (φ 1), the matrix A  tends to 
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where it is observed that the components of the matrix A  

 

A r A lAi i i2 1 1, , ,= =φ  and A r A lAi i i4 3 3, , ,= =φ   and i = 1 2 3 4, ,  or                     (6) 

 

There is a linear dependence between rows 1&2 and rows 3&4 and, therefore, the matrix A  is 

singular and rank deficient by two.  Thus, when φ  is large the matrix A  will be ill-conditioned and 

the recovered stress values will be sensitive to computational round-off in the solution of Equation 

(3). 

 

b) Dependence on size of patch (r -dependence) 

 

In order to examine the influence of the size of the element patch on the matrix A  (r -dependence) 

we shall consider the case where l → →0 0 (φ ) .  In this case the matrix A  tends to 
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This matrix has perfect condition when r = 1 unit of length .  However, for r  significantly greater 

than unity A A4 4 1 1, ,>>  and for r  significantly less than unity A A4 4 1 1, ,<< .  Thus for r  significantly 

different from unity the matrix A  becomes ill-conditioned.  This situation may have a practical 

significance in refined meshes where r  becomes small.  Indeed, depending on the system of length 

units in which r  is specified, A  may be either well- or ill-conditioned (consider 

r m mm= =1 1000 ). 

 

It is seen then that, for a fixed r , the condition of the matrix A  is strongly dependent on the 

position of the element patch in the co-ordinate system and deteriorates the further the centre is from 

the origin.  One way to overcome this dependency is to use a co-ordinate system that is local to the 

patch.  In order to avoid the problem of ill-conditioning due to the size of the patch, one could 

choose to use a co-ordinate system that is normalized with respect to the dimensions of the patch.  

The use of such a normalized local patch co-ordinate system (x y, ), in which 

− ≤ ≤ − ≤ ≤1 1 1 1x y and , has been recommended in a subsequent communication [5] and is 

shown in Figure 4. 
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Figure 4  The normalized local patch co-ordinate system of Zienkiewicz, Zhu and Wu [5] 

 

The equations of transformation between a co-ordinate system ( , )x y  and this normalized local 

patch co-ordinate system ( , )x y  are: 

 x
x x

x x
= − +

−

−
1 2 min

max min

 and    y
y y

y y
= − +

−

−
1 2 min

max min

  (8) 

 

The row vector P  used in Equations (2) and (3) is now written in the co-ordinates ( , )x y  such that 

P x y xy= 1, , , . 

  

c) Dependence on orientation (θ -dependence) 

 

Although the use of a normalized local patch co-ordinate system avoids the potential problems 

associated with the position and size of the patch, problems associated with the orientation of the 

element patch (θ -dependence) with respect to this co-ordinate system can still occur.   In order to 

demonstrate this phenomenon consider the patch of elements shown in Figure 5. 
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Figure 5  Element patch to show dependence on orientation of the patch 

 

In this figure the x -axis of the normalized local patch co-ordinate system ( , )x y  is rotated an angle 

θ  from a vector 
r
v  that is fixed in the element patch such that its origin is at the patch recovery point 

and is directed through the centre of a line running between the superconvergent points II and III. 

 

For this case the matrix A , which is defined in the co-ordinate system ( , )x y  can be written as: 
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where 
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z cr sr z sr cr1 1 2 2 1 2= + = +( ), ( )   and c s= =cos sinθ θ  and .  
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It is observed that the components 

A A ii i4
1

1
4

1 2 3, , , ,= =
∆

 where  or 4        (11) 

 

showing that there is a linear dependence between rows 1&4.  Now, although this singularity only 

occurs when θ
π π

= +
4 2

n  the value of the recovered stress is strongly dependent upon the angle θ .  

It is recorded that angles of θ
π π

= +
4 2

n  can occur in practical problems c.f. Part IV, Problem 3 and 

Mesh 3 of [3].  Indeed, it was this particular problem that demonstrated to the authors that the 

recovered stress could be dependent on the choice of co-ordinate system.   This point is 

demonstrated with an example.  Consider the rectangular patch of elements shown in Figure 5 with 

r m r m1 280 40= = and .  The values of the finite element stress at the four superconvergent points 

are chosen arbitrarily as σ σ σ σ
hI hII hIII hIV

MPa MPa MPa MPa= = = =200 100 500 150, ,   and .   

 

The condition number (defined as the ratio of the largest singular value to the smallest singular 

value) of the matrix A  has been plotted in Figure 6(b) and the singularity at θ = 45o is clearly 

visible.  The singularity is localised to this angle alone but for angles that are very close to 45o the 

matrix A  is ill-conditioned.   

 

The bi-linear stress surface σ p is fitted to the superconvergent stress values and it is seen, by 

observing Figure 6(a), that even though the finite element stresses at the superconvergent points to 

which the surface is fitted are always the same, independent of the orientation, the recovered stress 

is strongly dependent on the angle θ  even where the matrix A  is well conditioned (i.e. away from 



45o).  The reason for this behaviour is that the bi-linear stress surface defined in Equation (2) is not 

invariant to rotation.  This is demonstrated graphically in Figures 6(c)-(h) which shows the stress 

surface σ p for various angles between 0 and 90o.  The recovered stress values are also shown. 

 

THE PARENT PATCH CONCEPT 

 

In order to remove the dependence of the recovered stress on the orientation of the patch co-ordinate 

system (x y, ), the concept of the parent element [6], as used in the isoparametric mapping of four-

node quadrilateral elements, is appropriated and applied to the element patch.  The resulting parent 

patch and its associated curvilinear co-ordinate system ( , )ξ η  are shown in Figure 7. 
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Figure 7 The parent patch and associated curvilinear co-ordinate system 

 

The origin of the curvilinear co-ordinate system ( , )ξ η  is at the centre of the superconvergent points.  

The ξ -axis is directed through the intersection of the line running between the superconvergent 

points II and III and its bisector whilst the η-axis is directed through the intersection of the line 

running between the superconvergent points III and IV and its bisector.  The equations of 

transformation between a co-ordinate system ( , )x y  and this curvilinear patch co-ordinate system 

( , )ξ η  are: 
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Figure 6 Dependence of the stress surface on orientation of patch 



In the curvilinear co-ordinate system ( , )ξ η  the superconvergent points then have the simple unit co-

ordinates as shown in the figure. 

 

The row vector P  is now written in terms of the co-ordinates ( , )ξ η  as P = 1, , ,ξ η ξη . The 

matrix A  becomes 4 I  where I  is the identity matrix and is independent of the real patch of 

elements.  As such, the components of the vector { }a  may be written explicitly as: 
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It is observed that the value of the stress surface σ p at the centre of the superconvergent points 

( )ξ η= = 0  is simply the average of the values at the four superconvergent points.  Thus, for four 

elements having superconvergent points forming a parallelogram, the superconvergent point is 

coincident with the patch recovery point and the recovered stress is simply the average of the values 

of the finite element stress at the four superconvergent points.  For an arbitrary distribution of 

superconvergent points, the centre of the superconvergent points is no longer coincident with the 

patch recovery point and the recovered stress is determined by evaluating Equation (2) at the stress 

recovery point after first solving Equation (12) for the curvilinear co-ordinates of the patch recovery 

point.  This requires the solution of a pair of non-linear equations and can be done using a simple 

iterative technique such as Newton-Raphson [7]. 

 

With the parent patch concept the matrix A  is never singular or ill-conditioned and there is always 

a unique value for the recovered stress. 

 

Thus far we have only considered the patch recovery scheme as it applies to internal nodes.  The 

recovered stress for internal nodes is obtained by interpolating from the stress surface σ p. For 

boundary nodes the recovered stress is obtained by extrapolating from the appropriate stress surface.  

For corner nodes, i.e. those nodes belonging to a single element, the appropriate stress surface is the 

one defined using the superconvergent point for that element.  For other boundary nodes belonging 

to two elements the appropriate stress surface is the one that is defined using the superconvergent 

points of both elements. 

 

In Part II of this article the results for an error estimator based on the patch recovery scheme and 

using the concept of the parent patch will be presented and discussed. 
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THE ERROR ESTIMATOR 

 

An error estimator Ep based on the patch recovery scheme of [4] but using the concept of the parent 

patch is defined.  This error estimator will be tested on three plane elasticity problems: 

 

    1)  Rectangular continuum convergence problem 

    2)  Rectangular continuum distortion problem 

    3)  Stress concentration problem 

 

In addition, the results for another error estimator E3 will also be presented.  This error estimator 

was discussed in detail in [3].  Both error estimators Ep and E3 use estimated stress fields that are 

continuous in the sense of Equation (1).  For Ep the unique nodal stresses { }s  are determined from 

the patch recovery scheme using the concept of the parent patch whilst for E3, { }s  is taken as the 

nodal average of the finite element stresses evaluated directly at the nodes (SRS1 [3]). 

 

In evaluating and comparing the error estimators use shall be made of the error measures and 

effectivity ratio defined in [3].  For completeness these are now summarised. 

 

The true percentage error α  for a group of elements is defined as 

 

α = ×
U

U

e 100%       (14) 

 

where U  is the true strain energy.  The strain energy of the true error is U U Ue h
= −  where U

h
 is the 

finite element strain energy and is integrated using 5x5 Gauss quadrature for reasons explained in 

[3]. 

 

 

The estimated percentage error %α  for the group of elements is defined as 

%100~

~
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+
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eh

e
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U
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where the strain energy of the estimated error is { } { }∫=
V

e

T

ee dVU  ~~

2

1~
εσ  (V  is the volume of the 

group of elements) and is integrated using 2x2 Gauss quadrature.  For α~  the finite element strain 

energy is integrated using 2x2 Gauss quadrature ([3]). 

 

The effectivity of an error estimator is measured with the effectivity ratio which is defined as 

e

e

U

U
~

=β      (16) 

Error measures and effectivity ratios corresponding to error estimators Ep and E3 will be denoted 

with a subscript Ep and E3 respectively.  In addition to the integrated error measures αα ~ and , we 

shall also investigate the pointwise quality of the estimated stress field.  It has been claimed in [4] 

that because the unique nodal stresses from the patch recovery scheme have either been extrapolated 



(for boundary nodes) or interpolated (for internal nodes) from a stress surface that has been fitted to 

finite element stresses that are superconvergent then so the recovered stresses should also possess 

the superconvergent quality.  The rates of convergence of pointwise stress will be examined for the 

two error estimators studied in this article.  In examining the rate of convergence of the estimated 

stress at a point, the error in the estimated stress { }σ̂  will be required and is defined as 

 

{ } { } { } { } { }ee σσσσσ ~~ˆ −=−=                   (17) 

 

Where stress fields and components of stress at a point are discussed, the superscripts Ep and E3 

will denote the particular error estimator used. 

 

PROBLEM 1: RECTANGULAR CONTINUUM CONVERGENCE PROBLEM 

 

To demonstrate how the error measures converge as a finite element mesh is refined, a rectangular 

continuum problem is investigated as shown in Figure 8(a).  Plane stress is assumed with Young's 

Modulus E N m= 210 2 , Poisson's Ratio ν = 0 3.  and material thickness t m= 0 1. .  The applied 

static boundary conditions and the known analytical solution are given in the figure. 
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   (a) The problem       (b) The meshes 

 

Figure 8  Rectangular continuum convergence problem 
 

Four levels of mesh refinement are considered.  Since neither error estimator is able to detect error 

for a single element the initial mesh (Mesh 1) consists of 2x2 rectangular elements.  The remaining 

three meshes are achieved through uniform refinement of Mesh 1 and are shown in Figure 8(b). 

 

The error measures, effectivity ratios, and the x-component of the error in the estimated stress xσ̂  at 

points A and B are shown in Table 1.  The column headed h  lists the characteristic length of a 

typical element in the mesh and for this problem is taken as the y -dimension of an element (all 

elements being identical in size).  The dimension h  is illustrated for Mesh 1 & 2 in Figure 8(b). 

 

Table 1  Results for rectangular continuum problem 

   Error measures Effectivity ratios Point A Point B 

Mesh DOF h  α  3
~

Eα  Epα~  β E3 β Ep  3ˆ E

xσ  
Ep

xσ̂  
3ˆ E

xσ  
Ep

xσ̂  

1(2x2) 18 5 29.05 22.51 22.51 0.71 0.71 38.3 43.57 \ \ 

2(4x4) 50 2.5 9.16 8.38 8.42 0.91 0.91 14.4 15.61 5.38 6.53 

3(8x8) 162 1.25 2.47 2.41 2.41 0.97 0.97 6.08 7.71 1.52 1.70 

4(16x16) 578 0.625 0.63 0.63 0.63 0.99 0.99 2.95 3.91 0.34 0.44 
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        (a) Error measures      (b) xσ̂  at Point A     (c) xσ̂  at Point B 

Figure 9  Convergence characteristics for rectangular continuum problem 

 

Considering the results shown in Table 1 and Figure 9 the following observations are made: 

 

(i)  For Mesh 1 error measures EpE αα ~ and ~
3  are equal (at least to the 2 decimal places reported 

here).  This means that the strain energy of the estimated error eU
~

 is also equal for the two error 

estimators.  Such an observation might lead one to reason that the estimated stress fields 

{ } { }EpE σσ ~ and ~ 3
 are also identical in a pointwise sense.  However this is not the case as can be seen 

by observing the unique nodal stresses as given in Table 2. 

 

Table 2  Unique nodal stresses for Mesh 1 

 Error estimator E3 Error estimator Ep 

Node xσ~  yσ~  xyτ~  xσ~  yσ~  xyτ~  

1 -111.7 -17.5 -40.9 -106.4 0 0 

2 -111.7 -17.5 40.9 -106.4 0 0 

3 111.7 17.5 40.9 106.4 0 0 

4 111.7 17.5 -40.9 106.4 0 0 

5 -111.7 -17.5 0 -106.4 0 0 

6 0 0 40.9 0 0 0 

7 111.7 17.5 0 106.4 0 0 

8 0 0 -40.9 0 0 0 

9 0 0 0 0 0 0 

 

This situation provides an example of the way in which, when integrated, two different stress fields 

can yield the same value. 

 

(ii) Consider now the pointwise quality of the estimated stress fields.  Table 1 shows the x -

component of the error in the estimated stress xσ̂  at points A and B (see Figure 8(a)).  Figure 9(b) 

shows the way in which xσ̂  varies with h for Point A.  There is no patch recovery point at Point B 

for Mesh 1 and the variation of $σ x  with h for meshes 2,3 & 4 is shown in Figure 9(c). Figures 9(b) 



& (c) are plotted using logarithmic scales such that the gradient of the graph then represents the rate 

of convergence of xσ̂ . 

 

The rate of convergence varies for different meshes but tends to a constant value, called the 

theoretical rate of convergence, as the mesh is refined (h → 0).  For the element considered in this 

article the theoretical rate of convergence for a pointwise component of stress is n = 1.  For the 

superconvergent points the rate of convergence is one order higher than theoretical ie n = 2.  For the 

element under consideration there is a single superconvergent point at the isoparametric centre of 

the element.  The gradients corresponding to the theoretical and superconvergent rates of 

convergence are illustrated with triangular wedges in Figures 9(b) & (c). 

 

For Point B it is seen that the error in estimated stress xσ̂  for both error estimators appears to be 

reaching the superconvergent rate of convergence of n=2 as the mesh is refined with error estimator 

E3 giving the slightly superior results.  For Point A, it is observed that the error in estimated stress 

xσ̂  for both error estimators appears to be reaching the theoretical rate of convergence of n=1 as the 

mesh is refined.  Again error estimator E3 gives slightly superior results. 

 

(iii)  The effectivity ratios of both error estimators appear to be converging to unity as the mesh is 

refined.  Error estimators exhibiting such behaviour are termed asymptotically exact error 

estimators. 

 

 

PROBLEM 2: RECTANGULAR CONTINUUM DISTORTION PROBLEM 

 

The performance of the error estimators for a distorted mesh is now examined.  The rectangular 

continuum convergence problem with Mesh 1 is considered but now the mesh is distorted as shown 

in Figure 10.  Five levels of distortion will be considered with d varying between 0 and 4m in unit 

increments. 
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Figure 10  Mesh configuration for distortion tests 

 
 

Table 3 Results for distortion problem 

 Error measures Effectivity ratios 

d α  3

~
Eα  Epα~  β E3 β Ep  

0 29.04 22.51 22.51 0.71 0.71 

1 30.91 21.89 24.62 0.63 0.72 

2 36.49 20.82 30.42 0.45 0.74 

3 45.53 21.48 38.34 0.32 0.71 

4 57.05 29.04 46.27 0.30 0.62 



 

The results for this problem are shown in Table 3 and have been plotted in Figure 11.  It was 

observed in [3] that the decreasing effectivity of the error estimator E3 with distortion was due to 

the fact that as the mesh was distorted the finite element stress field, whilst moving further away 

from the true solution, also became smoother.  In contrast to this, error estimator Ep appears able to 

maintain a fairly constant level of effectivity (cf. Figure 13(b)) independent of distortion.  The 

reason for this can be found by comparing the estimated error stress field with the true error stress 

field as is shown in Figure 12. 

  
 

(a) Error measures   (b) Effectivity ratios 

 

Figure 11  Error measures and effectivity ratios for distortion problem 

 

PROBLEM 3: STRESS CONCENTRATION PROBLEM 

 

In this problem the performance of the error estimators for a problem involving a stress 

concentration is examined.  The problem studied is the classical problem of a square plate with a 

central circular hole subjected to uniform tensile boundary tractions as shown in Figure 13(a).  Plane 

stress is assumed with Young's Modulus E MN m= 10 2 , Poisson's Ratio ν = 0 25.  and a material 

thickness of t m= 0 01. .  There is no analytical solution to this problem when the dimensions of the 

plate are finite. However, lower and upper bounds to the true strain energy have been obtained by 

using compatible and equilibrium finite element models respectively on the refined mesh shown in 

the first quadrant of Figure 13(a).  For the equilibrium model the piecewise linear membrane 

element of Maunder [8] has been used. The true strain energy (for the quarter model) is thus 

bounded as 5 5245 5 5294. .≤ ≤U Nm  .  Due to the symmetry of this problem only one quarter of the 

domain need be modelled.  Four meshes are considered as shown in Figure 13(b).  
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  (a) The problem     (b) The meshes 



Figure 13  Stress concentration problem 

 

The results for this problem are shown in Table 4 and Figure 14.  Two values are tabulated for the 

percentage error α  and the effectivity ratios 
EpE ββ  and 3

.  These values correspond to the upper and 

lower bounds on the true strain energy with the values in parentheses being those corresponding to 

the lower bound on U.   

 

Table 4 Results for stress concentration problem 

  Error measures Effectivity ratios Point A 

Mesh DOF α  3

~
Eα  Epα~  β E3 β Ep  3~E

yσ  
Ep

yσ~  

1 18 3.205 (3.121) 0.790 4.457 0.240 (0.247) 1.393 (1.431) 24,834 19,654 

2 50 1.354 (1.268) 0.612 0.916 0.449 (0.479) 0.669 (0.713) 29,689 25,312 

3 162 0.441 (0.354) 0.271 0.343 0.616 (0.767) 0.774 (0.963) 32,895 29,349 

4 578 0.121 (0.034) 0.091 0.104 0.755 (2.672) 0.852 (2.975) 33,917 31,808 

 

In Figure 14(c) the y-component of the estimated stress at Point A is plotted against degrees of 

freedom.  Since the true stress at this point is not known the rate of convergence cannot be 

determined. 

 
        (a) Percentage error         (b) Effectivity ratios  (c) Estimated stress 

 

Figure 14  Convergence of results for stress concentration problem 

 

Observing the results for the stress concentration problem leads to the following observations: 

 

(i)  neither error estimator appears to be asymptotically exact 

 

(ii) The estimated stress field for Ep at points of stress concentration appears to be fairly poor 

 

 

CONCLUSIONS 

 

This article has demonstrated how, for the four-node isoparametric displacement membrane and for 

a configuration of four elements, the patch recovery scheme as proposed in [4] can produce results 

that are dependent on the orientation of the patch in the recommended normalized local patch co-

ordinate system of [5].  In order to overcome this problem the concept of the parent patch was 

introduced and it was found that this method produced results that were invariant to the orientation 

of the co-ordinate system.   

 



An error estimator Ep using the concept of the parent patch was defined and tested on three plane 

elasticity problems and compared with another error estimator E3.  Through these tests the 

following conclusions can be drawn: 

 

(i)  Although for some problems (cf. Problem 1) the error estimator  Ep did appear to be 

asymptotically exact, for others (cf. Problem 3) it did not. 

 

(ii)    For problems in which the elements are severely distorted (cf. Problem 2) it was seen that the 

error estimator Ep performed better then E3. 

 

(iii) The claim made in [4] that the recovered stresses are generally superconvergent has been 

demonstrated to be false for the patch recovery scheme using the parent patch concept.  Indeed, for 

the two convergence problems investigated (Problems 1 & 3) it was observed that the recovered 

stresses of error estimator Ep were inferior to those of E3 that are recovered by simple nodal 

averaging of the finite element stresses evaluated directly at the nodes. 

 

(iv)  It was observed that for parallelogram elements, the recovered stress obtained using the parent 

patch concept was simply the average of the superconvergent stress values in the patch of elements.  

This has some important implications.  The parent patch concept may only be suitable for the type 

and configuration of elements discussed in this article.  However, for other elements and 

configurations it might prove fruitful to examine patch recovery schemes that simply take the 

average of the 'ring' of superconvergent points that surround the patch recovery point.  For example 

consider the case of the eight-node displacement membrane.   
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