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Abstract

The plastic volume fraction is one of a range of parameters used in the design of rotating components that
are subjected to an overspeeding cycle as part of the manufacturing process. Overspeeding is carried out in
order to impart favourable residual compressive stresses and thereby improve the component’s fatigue life.
However, the amount of material that becomes plastic during overspeeding needs to be controlled carefully if
pre-machined manufacturing tolerances are to be maintained. The plastic volume fraction expresses the volume
of material in which yield has occurred as a fraction of the total volume, the actual value of which may only
be determined through non-linear plastic analysis. The complexity and associated cost of such analyses are of
such a level that a linear-elastic approximation to the plastic volume fraction is often used in lieu of the exact
quantity. This paper presents a scheme for estimating the plastic volume fraction as a post-processing operation
conducted on the results of a three-dimensional linear-elastic  nite element analysis. The performance of the
scheme is evaluated through numerical examples using element types typically found in commercial  nite
element codes. In addition to considering how the scheme is able to approximate the linear-elastic plastic
volume fraction, plastic analysis is used to illustrate the way in which this quantity approximates the actual
plastic volume fraction. The paper concludes with the analysis of a centrifugal impeller; a component drawn
from the author’s own  eld of interest. This analysis enables the various strands of the paper to be brought
together and provides an example through which it is possible to discuss suitable limiting values for the plastic
volume fraction. The examples indicate a plastic volume fraction of 0.05 to be a reasonable limiting value
for the linear-elastic approximation adopted in this paper.
? 2002 Elsevier B.V. All rights reserved.
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Nomenclature

a1, a2 and a3 dimensions of rectangular parallelepiped
A area of generator plane
c no of nodal stress con gurations
d depth of plastic penetration
D collection of terms
E Young’s modulus
F plastic volume fraction
L normalised applied load
M applied moment
n no of sampling points
N normalised area
p no of nodes for an element
q no of nodes where stress ¿ yield
r radius
R strain energy fraction
S normalised yield stress
t axial thickness of disc
U strain energy
xi, yi and zi Cartesian coordinates of node i
� Poisson’s ratio
� density
� normal stress
! angular velocity

Subscripts

eq equivalent
h  nite element value
p at plastic interface or yield surface
i at inner radius
o at outer radius
1, 2, and 3 components of principal stress
y yield value
r radial component of stress
� tangential component of stress

Superscripts

e elastic
p plastic
tilde used to denote a quantity calculated by sampling the FE stress  eld



A.C.A. Ramsay / Finite Elements in Analysis and Design 40 (2003) 213–237 215

1. Introduction

1.1. Background

The impellers of modern centrifugal compressors operate at high rim speeds with consequently
large stresses particularly in the bore or central region of the impeller hub or disc. Impeller de-
signers take considerable care, through attention to disc and vane geometry design, to achieve the
lowest possible stresses consistent with maintaining structural integrity in service and, in particu-
lar, a satisfactory fatigue life [1]. The eHorts of the designer to minimise the centrifugal stresses
can be usefully assisted by the process known as overspeeding [2,3], the  nished or part- nished
component is subjected to a short period of high-speed rotation on a purpose-built rig. The speed
is selected such that the most highly stressed regions become plastically deformed during the
overspeed run and, on deceleration, the release of strain in the surrounding elastic regions leads
to favourable residual stresses which may serve to reduce the mean working stress when cy-
cling between speeds and can provide a valuable improvement in the fatigue life of the
component.
The degree to which the material yields during the overspeed operation depends upon the cen-

trifugal load which varies with the square of the angular velocity. For impellers that are machined
prior to overspeeding, gross plastic deformation needs to be avoided if manufacturing and balanc-
ing tolerances are to be maintained. Local yielding in regions of stress concentration, however, is
desirable for the reasons outlined above. It is important, therefore, during the design phase of a com-
ponent, to be able to predict the location and degree to which yield will occur for a given level of
overspeed.
Traditionally, such an assessment of yield is performed manually through visual inspection of

contour or carpet plots of the relevant stress function derived from a stress analysis typically
using the  nite element method. Over recent years there has been a move towards the use of
automated computational optimisation techniques in the design of centrifugal impellers. These
techniques require the rapid assessment of large numbers of competing design variants and for
this reason it has become necessary to formalise and to automate the assessment of
yield.
A quantity that may be used to assess the degree of yield in competing designs is the plastic

volume fraction (PVF) and is here given the symbol F. This quantity is de ned as the ratio of
the volume of material that has yielded to the total volume of material and may only be deter-
mined through non-linear plastic analysis. Such analyses are complex and expensive to perform
and, as a cheaper, quicker alternative, more suited to use with the automated optimisation applica-
tion mentioned above, an estimate of the PVF may be derived from the results of a linear-elastic
stress analysis. This quantity is called the plastic volume fraction—elastic (PVFE) and is given the
symbol Fe.
As the PVFE is not generally reported in the output of  nite element systems a scheme for

calculating this quantity as a post-processing operation has been developed. This paper describes the
development of this scheme, evaluating its performance through a number of numerical examples
and demonstrating its application through the practical example of a centrifugal impeller. Although
the scheme presented in this paper was developed for the turbomachinery industry, it could equally
well  nd application in other  elds of structural engineering.
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Fig. 1. A simple sampling scheme in 1D (n = 5).

2. A simple sampling scheme

A one-dimensional line element and associated stress  elds serve as a vehicle to illustrate the
de nition of the various quantities used in this paper and to demonstrate how they may be calculated.
Consider the one-dimensional element and associated illustrative stress  elds shown in Fig. 1. 2

The exact stress  eld for the problem cannot exceed the yield stress, as shown, and gives the exact
plastic volume fraction F. The element is assumed to have uniform cross-sectional area and to be

2 A convention used in this  gure and throughout this paper is that nodes for which the stress exceeds yield are drawn
 lled.
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unit length so that the plastic volume fraction quantities may be marked on the  gure as lengths.
The linear elastic approximation to the exact stress  eld, which may exceed the yield stress, is also
shown and gives the exact PVFE, Fe. The third stress  eld shown is the  nite element stress  eld.
This stress  eld will, in general, be diHerent from the other two stress  elds and gives the  nite
element approximation of the PVFE, Fe

h . The purpose of the sampling scheme is to estimate the
 nite element approximation to the PVFE. This estimate is given the symbol F̃e

h and whilst generally
being diHerent from Fe

h , any valid sampling scheme should be such that F̃e
h is suLciently close to

Fe
h that it may be used in lieu of this quantity.
A simple sampling scheme can be de ned in which the element length is divided into n uniform

intervals with stress sampling points located at the centre of each interval. The quantity F̃e
h is

then formed by dividing the summation of the length of the intervals in which the sampled stress
exceeds yield, by the total length of the line element. The example highlights the possibility of a
diHerence between the quantities F̃e

h and Fe
h . An analysis shows that whenever the diHerence between

the element stress and the yield stress changes sign, an error is introduced into the calculation of
the plastic length the maximum value of which can be ± half the interval length. Thus, for the
case where there is only one change in sign over the element, the number of intervals required to
guarantee a diHerence of less than 5% is n=10. The number of sampling points required to provide
a similar degree of accuracy in three-dimensions is n = 103, a  gure which is clearly unacceptably
large for practical purposes.
In practical  nite element analysis Fe

h can be calculated exactly for the so-called constant stress
elements such as the three-noded triangle or, in three-dimensions, the four-noded tetrahedron by
simply summing up the volume of those elements in which the selected yield criterion is exceeded.
In general, and particularly in the analysis of centrifugal impellers, so-called higher-order elements,
which admit curved boundaries and linear or quadratic stress variation, are used. For such higher
order elements, one could devise a scheme to calculate F̃e

h in which representative values of the
element stress would be sampled, say at the integration points, and would be weighted with partial
element volumes. This method, however, would seem likely to perform badly with the sort of coarse
mesh that, for computational speed, is used with the automated optimisation application for which
this scheme has been developed. It is important, therefore, that the scheme to be developed account
for the variation in stress over the volume of an individual element.

3. The yield surface

As the scheme to be developed needs to take account of the variation of stress in an individual
element, it is necessary to describe the yield surface i.e. the interface between regions of the element
in which the stress exceeds yield and those in which it is below yield. In the general case, for an
element stress  eld of arbitrary form, the yield surface can be extremely complicated. Even after
applying what might be considered appropriate simpli cations to the element stress  eld the problem
of explicitly de ning this surface remains a diLcult one.
In order to reduce the complexity of the yield surface to a manageable level, it will be assumed

that the diHerence between the element stress and the yield stress can change sign no more than
once along any edge of an element. In this manner the yield surface can be characterised by the
con guration of nodal stresses some of which are above and some of which are below the yield
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Fig. 2. Nodal stress con gurations—1D element (p = 2).
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Fig. 3. Nodal stress con gurations—2D element (p = 4).

stress. For an element with p nodes, the number of con gurations of nodal stresses, c, for which q
nodal stresses exceed yield is given by the well-known equation (see Ref. [4] for example):

c =
(

p
q

)
=

p!
q!(p − q)!

; q = 0; 1; 2; : : : ; p: (1)

The nodal stress con gurations corresponding to all permissible values of q for a one-dimensional
element with two nodes are shown in Fig. 2. In a manner similar to that just described, the nodal
stress con gurations for a two-dimensional and for a three-dimensional element are shown, respec-
tively, in Figs. 3 and 4.
Only symmetrically independent con gurations are shown in the  gures. The total number of such

con gurations that can be generated by performing a series of rotations about the principal axes of
the element is indicated on each  gure.
The nature of the yield surface corresponding to a particular nodal stress con guration can be

illustrated by joining points on adjacent edges for which the element stress is equal to yield with
straight lines. Fig. 5 shows examples of surfaces thus obtained for both two- and three-dimensional
elements.
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Fig. 4. Nodal stress con gurations—3D element (p = 8).

4. The plastic volume

The simpli ed yield surfaces developed in the previous section surround the plastic volume which
now needs to be calculated. The shape of the plastic volume will depend on the particular nodal
stress con guration and will exhibit a great deal of variability from element to element. A general
and eLcient procedure for determining the plastic volume can be developed from the realisation
that:

(a) the number of nodal stress con gurations for a linear tetrahedron is small,
(b) that an analytical expression for the plastic volume occurring with each con guration can be

developed for the linear tetrahedron, and,
(c) that other common element shapes, such as the pentahedron and hexahedron are readily sub-

divided into tetrahedral elements.

The  ve possible nodal stress con gurations and associated plastic volumes for the tetrahedral
element are shown in Fig. 6.
With the exception of con guration number 3, the plastic volume is tetrahedral or the complement

thereof in the case of con guration number 4 and calculable from the well-known formula (see
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Fig. 5. Example yield surfaces.
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Fig. 6. Plastic volume in a tetrahedron.

Ref. [5] for example):

V =
1
6
det



1 x1 y1 z1
1 x2 y2 z2
1 x3 y3 z3
1 x4 y4 z4


 ; (2)

where xi, yi and zi are the co-ordinates of vertex i of the plastic volume.
For con guration number 3 the plastic volume is pentahedral in shape and needs to be sub-divided

into two tetrahedra so as to calculate the plastic volume.
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Fig. 7. Invariant sub-division for a quadrilateral face.
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Fig. 8. A systematic way of sub-dividing a hexahedral element into 24 tetrahedra.

Whilst there are a number of ways in which pentahedral and hexahedral elements might be
sub-divided into tetrahedral elements, particular attention needs to be given to the way in which
quadrilateral faces are sub-divided. In the general case, when all four nodes do not lie in the same
plane, the face takes up a shape which can be described as a warped plane [5]. With tetrahedral
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body-centred node
face-centred nodes

Fig. 9. A systematic way of sub-dividing a pentahedral element into 14 tetrahedra.

sub-division chosen so as to divide the quadrilateral face into two triangles, the volume of the
tetrahedra will diHer depending on which of the two possible diagonal sub-divisions is chosen—see
Fig. 7(a) and (b). This approach to sub-division could lead to erroneous plastic volume calcula-
tions and is therefore dismissed. An alternative approach is to carry out tetrahedral sub-division so
that quadrilateral faces are divided into four triangles utilising an additional face-centred node. The
topologically invariant form of sub-division utilising a face-centred node is shown in Fig. 7(c).
Taking note to ensure that each quadrilateral face is sub-divided in the topologically invariant

manner just described, the tetrahedral sub-division chosen for pentahedral and hexahedral elements is
shown in Figs. 8 and 9. The co-ordinates of the face-centred and body-centred nodes are determined,
respectively, as the average of the four corner nodes de ning the quadrilateral face and the 6 or 8
corner nodes de ning the pentahedral or hexahedral element.

5. The algorithm

The algorithm used to determine the plastic volume fraction for a mesh of elements and based
on the ideas developed in the previous section is shown in the form of a Row chart in Fig. 10. The
calculations are performed on elements with linearised geometries i.e. having edges that are straight
lines. For higher-order elements with mid-side nodes, the geometry is linearised by assuming the
mid-side node to lie at the centre of a line drawn between adjacent corner nodes. The linearisation
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volq - total volume of quadratic element

tvolt - total volume of tetrahedron

tvole - total volume of element

tvolm - total volume of model

pfrac - plastic volume fraction for model

pvole=pvole+pvolt

pvolm - plastic volume of model

pvolt - plastic volume of tetrahedron

pvole - plastic volume of element

pvole=factor*pvole

factor=volq/tvole

tvole=factor*tvole

tvolm=tvolm+tvole

pfrac=pvolm/tvolm

pvolm=pvolm+pvole
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element=quadratic
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Fig. 10. Flow chart of algorithm for estimating plastic volume fraction.
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of the geometry of quadratic elements introduces a small error in the calculated value of the plastic
volume which is accounted for by scaling the linearised value with the ratio of the exact quadratic
volume to the linearised volume of the element. The part of the algorithm that deals with this
correction is enclosed by a box drawn in dotted lines in the  gure.
Each element is sub-divided into tetrahedra the number of which is dependent on the element

shape, as already discussed. In order to carry out this sub-division it is necessary to de ne the
positions of face-centred and body-centred nodes and to assign values of stress to these additional
nodes. Both the co-ordinates and the stresses of these additional nodes are de ned in the same
manner. This involves taking the average of the values de ning the corner nodes of the face or the
corner nodes of the volume.
Following sub-division, the nodal co-ordinates and stresses of each new tetrahedron are passed

to a routine in which the total and plastic volume of the tetrahedron are determined. The form of
the plastic volume calculation undertaken depends on how many of the nodal stress values exceed
the yield stress i.e. on the particular nodal stress con guration. Associated with this calculation is
the requirement to determine the positions on the edges of the tetrahedron where the element stress
equals the yield stress. These positions are determined based on an assumed linear distribution of
stress along element edges between corner nodes.
In order to establish whether or not yield has occurred, a yield criterion is required in which the

state of stress, expressed as a single number known as the equivalent stress, �eq, is compared with
the yield stress as established from a simple uniaxial tensile test, �y. The equivalent stress commonly
used with ductile materials is the von Mises stress [6]. This equivalent stress, can be expressed in
terms of the three principal stresses (�1, �2 and �3) as follows:

�eq =
1√
2
{(�1 − �2)2 + (�2 − �3)2 + (�3 − �1)2}1=2: (3)

Since the calculations carried out in order to determine the plastic volume are performed on an
element basis, the nodal stresses supplied as input data to the algorithm could be either unaveraged
element nodal stresses or, alternatively, nodal-averaged values. For the purposes of the numerical
examples detailed in this report, nodal-averaged values are used. A choice also exists between inter-
polating nodal equivalent stresses or interpolating the complete stress tensor. The more appropriate
approach is the latter and it is this that has been adopted for the numerical examples presented in
this paper.

6. Numerical examples

This section is concerned with demonstrating that the scheme presented in this paper performs
correctly and eHectively i.e. in how the  nite element estimate of the PVFE, Fe

h , approximates the
exact PVFE, Fe. Additionally, as a way of developing an understanding of the PVFE quantity, the
nature of the relationship between the Fe and the PVF, F , will be explored.
The  rst numerical example investigates a problem for which both Fe and F are known and

demonstrates, for a range of  nite element types, that the scheme presented in this paper is able to
predict eHectively the Fe.
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Fig. 11. Geometry and applied loading.

The second numerical example takes the case of plasticity in a thin rotating disc as an example
exhibiting the sort of stress  eld found in rotating components.
In the third numerical example a centrifugal compressor impeller is examined.

6.1. Example number 1—cubic beam

This example has been chosen with the primary aim of demonstrating that the numerical scheme
presented in this paper is convergent for a range of diHerent types of three-dimensional continuum
elements of the type typically found in commercial  nite element codes. As with other quantities,
the PVFE predicted by the  nite element model, F̃e

h, should converge to the exact value, Fe, as the
mesh is re ned i.e.

F̃e
h → Fe as hmax → 0; (4)

where h is the characteristic length of an element in the  nite element mesh and the subscript max
indicates that the maximum elemental value is taken.
It is important, therefore, that the problem chosen possess an analytical, closed-form elastic solution

from which the exact PVFE, Fe, can be determined. In addition, if the problem possess a closed-form
plastic solution then comparison between the exact PVF, F , and the exact PVFE, Fe, may also be
made.
A problem possessing closed-form solutions for both elastic and plastic stress  elds is that of a

rectangular parallelepiped geometry loaded on a pair of opposite faces, in the manner of a beam,
with equal and opposite moments. The geometry and boundary conditions for the elastic stress  eld
are shown in Fig. 11. The second moment of area for the beam is

I =
a3a32
12

: (5)
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Fig. 12. Elastic and plastic stress distributions.

The closed-form elastic solution to this problem is a uniaxial stress  eld with linear variation in
the y-direction as highlighted in the upper half of Fig. 12.
In the lower half of the  gure the closed-form plastic solution, in which the stress is limited to

the yield stress, �y, is highlighted. The parameter d is used to quantify the volume of material in
which the stress remains below yield and, in conjunction with the dimension a2 can be used to form
the plastic volume fraction:

F =
a2 − d

a2
: (6)

The applied moment, M , which is a function of the plastic volume fraction can be normalised in
the following manner:

L =
Ma2
12I�y

: (7)

The normalised moment required to achieve a given plastic volume fraction with an elastic stress
distribution can be deduced from Fig. 12 as

Le =
1

6(1− F)
: (8)

In a similar manner the normalised moment for a given plastic volume fraction with a plastic
stress distribution is

Lp =
2(1 + F)− F2

12
: (9)

The variations of plastic volume fraction with applied moment for both elastic and plastic cases are
shown in Fig. 13. For the elastic case Fe → 1 as L → ∞. In contrast, for the plastic case a unit
plastic volume fraction, F = 1, is achieved with a  nite applied moment of L = 1=4.
This problem is now analysed by the  nite element method using meshes consisting of regular

grids of tetrahedral, pentahedral and hexahedral elements. A normalised moment of 1/3 is applied
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so that the plastic volume fraction that should be recovered from the models is 1/2. Equal values
are chosen for a1, a2 and a3 such that the geometry is a cube. Both linear and quadratic elements
are considered and, where the exact solution is not recovered with the initial mesh (level 0), up to
two additional uniformly re ned meshes, designated level 1 and level 2, are considered.
The way in which the various models perform is illustrated in Fig. 14 where carpet plots of

unaveraged von Mises stress are presented. In this  gure the darker shade is used to indicate regions
where the  nite element stress exceeds the yield stress. The  gure lists the  nite element approxi-
mation to the PVFE, Fe

h , and, in addition, presents the strain energy ratio R. This quantity, which
is only possible to evaluate with a knowledge of the exact solution, provides an integral measure of
proximity of the  nite element solution to the exact value.
For this problem, in which the exact stress  eld is linear, meshes of all types of quadratic elements

can reproduce the exact solution. Meshes of linear elements are capable only of approximating the
exact solution and have strain energies that converge with (uniform) mesh re nement, as expected
for force driven problems, from below the exact value. In most cases the estimated plastic volume
fraction is seen to be close to the exact value i.e. Fe

h ≈Fe. This, however, is not the case for
the coarse models of both linear and quadratic tetrahedra. There appear to be two reasons for this
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Fig. 14. Carpet plots of unaveraged von Mises stress.



A.C.A. Ramsay / Finite Elements in Analysis and Design 40 (2003) 213–237 229

Fig. 15. Carpet plots of nodal -averaged von Mises stress.

observation as outlined below.

(1) With coarse models, especially of linear elements, the diHerence between averaged and unaver-
aged values can be signi cant as is demonstrated by comparing the results presented in the  rst
row of Fig. 14 with those of Fig. 15 which have been averaged.
As discussed, nodal-averaged values have been used in the plastic volume calculations thus
providing an explanation for the, initially, rather surprisingly small estimate of the plastic volume
fraction for the level 0 and level 1 meshes of linear tetrahedra.

(2) The estimated plastic volume for the mesh of quadratic tetrahedra is greater than the true value
even though the model reproduces the exact solution in terms of stresses. An explanation for
this behaviour is provided through consideration of a one-dimensional analogue.

In Fig. 16 three cases of stress variation over a one-dimensional line element are considered. For
each case, the actual stress distribution, �, is drawn together with the modulus of the stress, |�|, (this
being representative of the von Mises stress in the three-dimensional situation) and a linearisation
of the modulus of the stress |�|L as used in the method of estimating the plastic volume currently
under discussion.
The length of the line element in which the stress exceeds yield is termed the plastic length and

for an element of uniform cross-section would be proportional to the plastic volume. It can be seen
that the plastic length obtained when using the linearised stress can be signi cantly greater than that
for the unlinearised stress  eld. The degree to which the plastic length is over-predicted is strongly
case dependent and will only occur when the stress changes sign along the edge of an element as
is the case for the mesh of quadratic tetrahedra used in the beam problem. Because of the higher
degree of variation in stress within an individual element, it would appear that this behaviour is
more likely to occur for quadratic elements and that it would tend to lead to a safe over-estimate
of the plastic volume.
This example demonstrates the convergence of Eq. (4) and by doing so illustrates the convergent

nature of the sampling scheme i.e. that F̃e
h → Fe

h as hmax → 0.

6.2. Example number 2—thin rotating disc

Whilst the previous example served to demonstrate the convergence of the scheme for estimating
the PVFE, the linear uniaxial stress  eld in the cube cannot really be considered as representative of
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Fig. 16. Over-estimation of plastic volume—demonstration in 1D.

the sort of stress  eld occurring in rotating components. In contrast, this example, whilst eHectively
one-dimensional in nature, possesses a stress  eld which represents closely that which occurs in the
hub and shroud of a centrifugal impeller.
As with example number 1, the thin (plane stress) rotating disc possesses closed-form solutions

for both elastic and plastic stress  elds and these are well known and widely reported for both
steady-state conditions [7] and for accelerating conditions [8]. Whilst elastic and plastic closed-form
solutions will be compared, the main objective of this example will be to establish how eHectively
the  nite element estimates the PVFE in particular with the sort of coarse meshes that will be
used for modelling the centrifugal impellers for which the scheme presented in this paper was
developed.
For the disc being considered, the plastic volume fraction may be expressed in terms of the inner

and outer radii, ri and ro, respectively, and the plastic interface radius rp which is the radius at
which the yield surface resides

F =
r2p − r2i
r2o − r2i

: (10)
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Fig. 17. Plastic volume fraction versus normalised applied load.

In addition to the plastic volume fraction, a further non-dimensional geometric parameter, here termed
the normalised area, can be de ned for the rotating disc

N =
A
r2o

; (11)

where A = $(r2o − r2i ) is the area of the generator plane of the disc.
As with the previous example, a non-dimensional applied loading term which is a function of the

plastic volume fraction, the normalised area and Poisson’s ratio can be de ned as

L =
�A!2

�y
: (12)

Using the equations for the elastic stress distributions, as summarised in Appendix A to this paper,
the normalised loading may be expressed as

Le =
12$N {2$(D1 − D2)}

D1 {8$2 + N 2(3� + 1)(F − 1)2} − 4D2 {$ − N} ; (13)

where D1 =
√{$ + N (F − 1)} and D2 = {2$ + N (F − 1)}√($ − N ).

In a similar manner, using the expressions for the plastic stress distribution derived using the
Tresca yield criterion, the normalised loading may be written as

Lp =
8$N {$ + N (F − 1)}

8$2 − 2$N {2F(� − 1)− � + 5} − N 2 {F(3� + 1)− 2(� − 1)} {F − 1} : (14)

Representative, i.e. for a given values of N and �, variations of plastic volume fraction with applied
load for both elastic and plastic cases are shown in Fig. 17. In contrast to the  rst example, where
an in nite moment was required to obtain a unit PVFE, Fe = 1 is achieved with a  nite applied
load for the rotating disc.
An axisymmetric  nite element model of a disc is now considered. The  nite element mesh

of the generator plane in which the dimensions of the disc are identi ed is shown in Fig. 18. A
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Fig. 18. Finite element mesh for thin rotating disc.

square generator plane has been used in order to avoid element distortion whilst retaining a coarse
four-element mesh. The thickness of the model is such that in the centre of the model the plane
stress assumption is invalid. The stresses at the outer axial positions A, B and C in Fig. 18, however,
will adhere to the plane stress assumption and it is these that will be used in the ensuing discussion.
Although results will only be reported at the corner nodes identi ed in the  gure, eight-noded
elements with mid-side nodes were used in the analysis.
The material and mechanical properties chosen for this analysis were those of a typical steel:

E = 210 GPa; � = 0:3; � = 7800 kg=m3; �y = 200 MPa: (15)

The angular velocity used for the analysis was set to correspond with a PVFE of Fe = 0:5 which
was calculated using Eq. (A.4) (see Appendix A) as ! = 109:749 rad=s. It is noted that although at
this speed the disc would in practice be fully plastic, with an area-mean hoop stress of 219.22MPa
(calculated using Eq. (A.5)), for a typical steel, which will have a tensile strength signi cantly above
this level of stress, the disc would not have failed through bursting [9].
In this example the Tresca yield criterion is used [7]. For the thin rotating disc �� ¿ �r for all

radii, r, and based on the Tresca yield criterion the equivalent stress is

�eq = �� − �r: (16)

The stresses as reported by the  nite element model at the points identi ed in Fig. 18 are listed in
Table 1 along with the corresponding equivalent stress.
Assuming a linear variation of equivalent stress between element corner nodes the radial position

of the yield surface can be determined (rp = 1:63) and the corresponding PVFE is calculated to be
F̃e

h = 0:55. For this example it is observed, therefore, that the  nite element method over-estimates
the true PVFE.
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Table 1
Finite element stresses [MPa]

Point �� �r �eq

A 140.4 3.3 137.1
Ba 205.9 41.9 164.0
C 314.1 12.0 302.1

anodal averaged results are reported for this position.

Fig. 19. Finite element mesh for centrifugal impeller—full wheel.

6.3. Example number 3—centrifugal impeller

This third and  nal problem has been included as an example of the intended application of
the method. A full-wheel model of a low Row coeLcient centrifugal compressor wheel, of the sort
discussed in Ref. [10] is shown in Fig. 19. For a study of the stresses induced by centrifugal loading
alone, it is suLcient to consider a cyclically symmetric sector model.
The study conducted here will involve monitoring the way in which the plastic volume fraction

varies with yield stress and the results, generated using higher-order elements, are shown in Fig. 20
in which carpet plots of nodal-averaged von Mises stress are plotted for selected values of yield
stress. In order to normalise the yield stress, it has been divided by the maximum von Mises stress
occurring in the model and is given the symbol S. The contour levels are adjusted for each case so
that the darker shading represents regions where the von Mises stress exceeds yield.
For values of the normalised yield stress of zero and unity the exact plastic volume fractions are

known. For intermediate values of S the plastic volume fraction varies smoothly between 1 and 0
as shown in the  gure. The regions in which plasticity  rst appears are those occurring around the
leading edge of the impeller. Plasticity then progresses into the shroud and  nally into the hub of
the impeller. If the aim is to limit plasticity to the leading edge where an improved fatigue life
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Fig. 20. Carpet plots of nodal averaged von Mises stress—sector model.
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is desirable and to ensure that plasticity does not progress to the shroud where tolerances in the
regions of sealing rings are of importance then, for the impeller being considered here, a plastic
volume fraction in the region of 0.05 might be considered acceptable. This value of the plastic
volume fraction is of the order of magnitude used in the industry and can be seen as appropriate by
inspection of the plots of plastic volume fraction versus applied load for examples 1 and 2 (Figs. 13
and 17, respectively). There it is seen that whilst the elastic and plastic curves are diverging, the
error in applied load between the two curves for a plastic volume fraction of 0.05 is small.
Whilst not proposed as a general  nding, the results of examples number 1 and 2 indicate the

behaviour of the various quantities to be characterised by the following inequality:

F ¿ F̃e
h¿Fe (17)

It is also demonstrated that for small plastic volume fractions Fe → F . It is reasonable to assume,
therefore, that for plastic volume fractions of the magnitude likely to be used for the impeller, the
 nite element approximation is close to the true value.

7. Closure

A scheme for estimating the plastic volume fraction based on the results of a linear-elastic  nite
element analysis has been presented. The scheme has been designed for use with coarse meshes in
which it is necessary to account for the variation in stress within a single element. The computational
eHort required by the scheme is not signi cant being comparable to other post-processing operations
that manipulate element stress  elds. The convergence of the scheme has been examined and the
relationship between the plastic volume fraction as calculated from a plastic stress  eld (PVF) and
that calculated from an elastic stress  eld (PVFE) has been investigated.
The PVFE is a quantity that is used in the assessment of centrifugal impellers and an example of

this has been provided in this paper. Limiting values for this quantity derive from long experience
gained from the design of similar components and a realisation that for small amounts of plasticity
the PVFE closely approximates the true value. Whilst values are likely to be application dependent,
the examples shown in this paper indicate that a plastic volume fraction of 0.05 is a not unreasonable
limiting value for the validity of the linear-elastic approximation. The development of the scheme
presented in this paper has enabled the automation of what was previously a manual process thereby
allowing structural constraints to be checked automatically within a computational system for the
automatic optimisation of impeller geometries.
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Appendix A. Equations for rotating discs

The stresses in the elastic portion of a thin rotating disc are

�r = C1 +
C2

r2
− 3 + �

8
�!2r2; �� = C1 − C2

r2
− 1 + 3�

8
�!2r2; (A.1)

where the constants of integration C1 and C2 are determined from the (radial) stress free conditions
at inner and outer radius as

C1 =
3 + �
8

�!2(r2i + r2o); C2 =
3 + �
8

�!2r2or2i : (A.2)

The radial position of the yield surface, r̃p, according to the Tresca yield criterion is determined by
solving the following equation:

�� = �y; r = rp (A.3)

and for a given radius rp the angular velocity is

!e =

√
−8�yr2p

�
(

r4p(3� + 1)− r2pD0(� + 3)− D1(� + 3)
) ; (A.4)

where D0 = r2i + r2o and D1 = r2i r2o .
The area-mean hoop stress is traditionally used in disc design to ensure adequate burst margin

and is de ned as

X�� =

∫
A �� dA∫

A dA
; (A.5)

where A is the area of the disc generator plane.
Carrying out the integration of Eq. (A.5) on the uniform thickness disc under consideration leads

to

X�� =
�!2

3
(r3o − r3i )
(ro − ri)

: (A.6)

References

[1] P.M. Came, C.J. Robinson, Centrifugal compressor design, Proceedings of the Institution of the Mechanical Engineers,
Part C, J. Mech. Eng. Sci. 213 (C2) (1999) 139–155.

[2] A. Nadai, L.H. Donnell, Stress distributions in rotating discs of ductile material after the yield point has been reached,
Trans. ASME 51 (1929) 173–181.

[3] D.G. Wilson, T. Korakianitis, The Design of High-ELciency Turbomachinery and Gas Turbines, 2nd Edition,
Prentice-Hall, Englewood, CliHs NJ, 1998, p. 556.



A.C.A. Ramsay / Finite Elements in Analysis and Design 40 (2003) 213–237 237

[4] R.V. Hogg, J. Ledolter, Applied Statistics for Engineers and Physical Scientists, 2nd Edition, Macmillan Publishing
Company, New York, 1992.

[5] J. Robinson, Understanding Finite Element Stress Analysis, 2nd Edition, ISBN 0-9507-172-0-7, Robinson and
Associates, Bridestowe, UK, 1981.

[6] J.A. Collins, Failure of Materials in Mechanical Design: Analysis, Prediction, Prevention, John Wiley & Sons,
New York, 1993.

[7] D.W.A. Rees, Elastic-plastic stresses in rotating discs by von Mises and Tresca, Z. Angew. Math. Mech. 79 (4)
(1999) 281–288.

[8] T. Reddy, A. Yella, H. Srinath, EHect of acceleration stresses on the yielding of rotating disks, Int. J. Mech. Sci.
16 (1974) 593–596.

[9] A.G. Holms, J.E. Jenkins, EHect of strength and ductility on burst characteristics of rotating discs, Natl. Adv. Comm.
Aeron., Tech. Note 1667, 1948.

[10] P. Dalbert, B. Ribi, T. Kmeci, M.V. Casey, Radial compressor design for industrial compressors. Proceedings of the
Institution Mechanical Engineers, Part C, J. Mech. Eng. Sci. 213 (C2) (1999) 71–83.


	Estimation of the plastic volume fraction from alinear-elastic finite element analysis
	Introduction
	Background

	A simple sampling scheme
	The yield surface
	The plastic volume
	The algorithm
	Numerical examples
	Example number 1---cubic beam
	Example number 2---thin rotating disc
	Example number 3---centrifugal impeller

	Closure
	Acknowledgements
	Appendix A. Equations for rotating discs
	References


