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Summary. Strategies for sub-modelling with hybrid equilibrium plate elements of varying 
degree are outlined from a practical engineering point of view. Possible types of boundary 
condition which can be transferred to a sub-domain are considered, and the use of codiffusive 
tractions is illustrated for a stress concentration problem.  

 
 

 
1 INTRODUCTION 

In structural finite element analysis, a relatively coarse global finite element model may be 
initially designed and analysed in order to capture the main features of structural behaviour. 
Quantities of interest, such as concentrations of stress-resultants at a particular geometrical 
feature, may then be obtained with greater accuracy by analysing a refined submodel with 
boundary conditions transferred from the global model1. This submodelling strategy is 
motivated by various factors, e.g. to simplify complex models into ones with limited numbers 
of degrees of freedom, and to reduce the potential for ill-conditioning. Other strategies with 
similar motivations have been proposed, e.g. using substructures in a finite element tearing 
and interconnecting (FETI) method2. 

Various combinations of finite element models and interface boundary conditions can exist 
for a submodelling strategy. For example  discretisations Ω and  Ωs of the complete domain  
and a particular subdomain of interest can be of the conforming and/or equilibrating type, 
with boundary conditions involving displacements and/or tractions transferred along an 
interface which may or may not coincide with the mesh lines of the global model. The transfer 
is represented by the map e in Equation (1), and is shown diagrammatically in Figure 1, 

 

s
ff e

ΩΩ →                                                                             (1) 
where f denotes excitations, in the form of tractions and/or displacements, applied to the 
interface. In the case of conventional conforming models e can be defined by interpolating 
displacements from global nodes to those of the submodel, e.g.using master-slave concepts4. 
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Figure 1: Global model and a submodel.                                      Figure 2: Subdivision of a hybrid element 
 
When Ωs is formed from hybrid equilibrium elements5, f can be defined solely by tractions 

when Ωs is a subdivision of Ω on the interface and equilibrating tractions are derived from 
nodal forces6. On the other hand when both Ω and Ωs are formed from hybrid equilibrium 
elements f can be defined by tractions which maintain strict statical admissibility when Ωs is a 
subdivision of Ω on the interface, and by tractions with controllable statical inadmissibilities 
in the more general case  when the interface is formed by an arbitrary “cut” chosen by the 
engineer. The remainder of this paper considers only the use of hybrid equilibrium elements 
in the context of plate problems. 

2 HYBRID EQUILIBRIUM ELEMENTS 

 The hybrid type of equilibrium element is illustrated in Figure 2. It has an inherent 
subdivision into primitive triangular subdomains so as to eliminate or control the existence of 
spurious kinematic modes. Internal stress fields σ of degree p are defined to be statically 
admissible though semi-continuous. A basis for edge displacement fields u is defined 
independently for each edge as complete Legendre polynomials up to degree p. The dual basis 
for edge tractions t is defined by the same polynomials with appropriate scaling, i.e.  

 

Vvu = ; Ggt = ; where SVG .=  and  
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TVdeVS                                  (2) 

 
The discretisations of the interface will be assumed to involve straight edges, whilst the 

external boundary of Ω may include curved edges in a similar way as for isoparametric 
conforming elements.  

3 SUBDOMAIN BOUNDARY CONDITIONS 

On the edges of a subdomain, tractions are applied as modes g defined by Equation (3). 
 

∫=
edge

T detVg ~                                                                   (3) 
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where t~ denotes tractions from Ω. Strong equilibrium is maintained with co-diffusive 
tractions when Ωs subdivides Ω on the interface and the local degree of Ωs ≥ degree of Ω. 
Relaxation of co-diffusivity may be considered when (a) it is sufficient, by appeal to the 
principle of St Venant, to transfer only the basic modes of edge traction which represent the 
resultants; or (b)  Ωs doesn’t subdivide Ω, e.g. when the interface is formed by an arbitrary cut 
through elements of Ω. In this case discontinuities are to be expected in t~ along an edge of 
Ωs. 

  

4 NUMERICAL EXAMPLE 

4.1 A classical problem with practical significance 

A classical problem appropriate for the study of sub-modelling is that of the plate-membrane 
with a circular hole.  The hole concentrates the stress and the aim is to obtain an accurate 
prediction of this peak stress.  This problem characterises much of the analysis conducted in 
the field of practical mechanical engineering where, typically, such peak stresses limit the 
fatigue life, high and/or low-cycle, of a component.  If modelled correctly this problem has an 
analytical solution with which the FE results may be compared. Correct modelling requires 
that the boundary conditions be derived from the analytical stress field for the particular 
geometry of the FE model.  The analytical stress field is given as: 
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where r and θ  are polar position ordinates, a is the hole radius and ∞σ  is the (uniform) value 
of xσ  at ∞=r . The FE model used for this problem utilises symmetry by modelling only a 
 

 
          (a)  Domain and mesh Ω                                                      (b)  Analytical stress concentration factor = 3.0 

Figure 2: Finite element model and analytical stress σx  field in a subdomain 
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quarter of the plate which is designated as the domain and the FE mesh Ω is shown in Figure 
2(a). Ω consists of six elements with a biasing towards point A where the stress concentration 
factor (scf) is sought. The curved boundary is modelled by three piecewise quadratic edges 
defined with end and midpoints on the circular arc. Convergence of the scf is illustrated in 
Figure 3 when Ωs is a refinement of the single element of Ω  shown in Figure 2. 
 

 
ps = 1 ⇒ scf = 2.57                                 ps = 4 ⇒ scf = 2.85                             ps = 2, h = 2 ⇒ scf = 2.84         
 

Figure 3: Convergence of the scf for σx,  ps is the degree, h is the level of h-refinement 
 

5 CONCLUSIONS 

- Submodelling strategies have been outlined for use with p-type hybrid equilibrium 
elements in the context of modeling plates in which boundary conditions are 
transferred as tractions. 

- Boundary tractions may be codiffusive and lead to the preservation of statically 
admissible solutions within a subdomain. However inherent errors in these tractions 
imply that solutions will not necessarily converge to correct values of quantities of 
interest. 

- Considerable freedom is available to the engineer in specifying an interface for a 
subdomain and its discretisation. Various options present themselves for the 
relaxation of the use of strictly codiffusive tractions, and these need to be 
investigated further for their effectiveness. 
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